

Vision Mission Value Quality Statement:

Vision:

We design solutions for industry and for the success of our customers by:

- Optimizing the use of technology with applications
- Using an efficient, timely customized process to fill specific customer needs
- Increasing capacity and streamlining operations
- Preserving our reputation for reliability
- Expanding globally to support our customers and stay current with new technologies
- Leveraging and sharing our knowledge to meet challenges openly
- Nurturing a creative, cooperative culture committed to the individual and to providing the best solutions for the customers

Mission Statement:

Partnerships

Innovating products, processes and services to improve performance and efficiency in our industry.

Schroeder Industries Core | Shared Values: Honesty

Day-to-Day Behaviors:

- Tell the truth at all times, in all matters
- Have open lines of communication and share timely, accurate and thorough information with internal and external customers
- Do not steal and respect each other's and the Company's property

Day-to-Day Behaviors:

- Work as a team
- Cooperate within and between departments
- Coach and mentor; listen and share knowledge, experience and ideas
- Treat others with respect and consideration in all circumstances
- Invest in the development and growth of all team members
- Keep our work areas safe and clean

Leadership

Day-to-Day Behaviors:

- Recognize that we are empowered to act as leaders and participate in the decision making process
- Take responsibility for and have pride in our work
- Set goals and celebrate the efforts and accomplishments of our teammates
- Value our greater community and take leadership roles in our neighborhoods and for the environment

Ingenuity | Innovation

Day-to-Day Behaviors:

- Value innovative thinking and the generation and implementation of new ideas to solve customer (internal & external) problems
- Be flexible and adapt to new ideas and different ways of doing things
- Utilize available resources for new designs and innovations

Quality Policy:

Continuous improvement in our business to ensure a quality product, shipped on time, without compromise.

Limitations of Liability

The information contained in the catalog (including, but not limited to, specifications, configurations, drawings, photographs, dimensions and packaging) is for descriptive purposes only. Any description of the products contained in this catalog is for the sole purpose of identifying the products and shall not be deemed a warranty that the products shall conform to such description. No representation or warranty is made concerning the information contained in this catalog as to the accuracy or completeness of such information. Schroeder Industries LLC reserves the right to make changes to the products included in this catalog without notice. A copy of our warranty terms and other conditions of sale are available upon request. A placed order constitutes acceptance of Schroeder's terms and conditions.

Failure, improper selection or improper use of the products and/or systems described herein or related items can cause death, personal injury and property damage.

This catalog and other documentation from Schroeder Industries provides product information for consideration by users possessing technical expertise.

It is important that the user analyze all aspects of the specific application and review the current product information in the current catalog. Due to the variety of operating conditions and applications for these products, the user is solely responsible for making the final product selection and assuring that all performance, safety and warning requirements of the application are met.

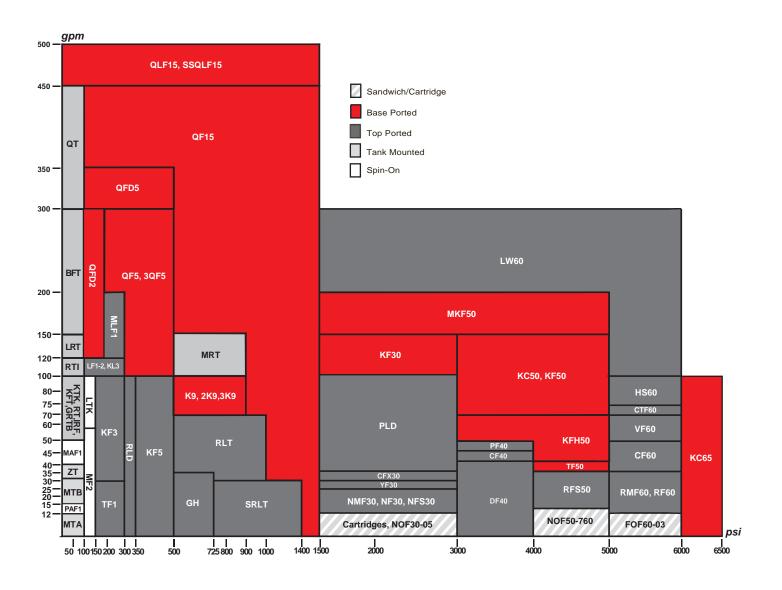
The products described herein, including without limitation, product features, specifications, design, availability and pricing are subject to change at any time without notice.

Contents at a Glance

Detailed Contents: Hydraulic & Lube Filters	4
Filter Housing: Flow vs. Operating Pressure	6
Note to the Reader	7
Corporate Overview	8
Capabilities	9
Products	10
Section 1: Principles of Filtration	11
Contamination Control Fundamentals	12
Element Technical Data Fundamentals	16
Element Media Selection Considerations	20
7 Steps to Selecting a Filter	23
Filter Selection Considerations	24
Ordering Information	27
Section 2: Element Technology	29
Excellement® Z-Media® Elements (Synthetic)	30
Element Case Weight	33
GeoSeal® Selection Guide	34
Private Labeled Elements.	35 36
Anti-Stat Pleat Elements (Synthetic)	36 36
BestFit® High Performance Replacement Elements.	30 37
CoreCentric® Coreless Element	38
Melt-Blown and Spun Bonded Filter Elements.	38
E Media Elements (Cellulose)	39
M Media Elements (Reusable Metal)	40
F-Pack Media Elements	40
W Media Elements (Water Removal)	41
Aqua-Excellement™ High Efficiency Media (Water Removal)	41
Section 3: High Pressure Filters (1500 - 6500 psi)	43
Selection Guide	44
Top-Ported High Pressure Filters	45
Base-Ported High Pressure Filters	97
Hydrostatic (Bidirectional) Flow Filters	117
In-Line Filters	125
Servo Protection (Sandwich) Filters	131
Manifold Mount Filter Kit	143
Cartridge Elements for use in Manifold Applications	147
Section 4: Medium Pressure Filters (up to 1500 psi)	149
Selection Guide	150
Top-Ported Medium Pressure Filters	151
Base-Ported Medium Pressure Filters	169
Section 5: Low Pressure Filters (up to 500 psi)	209
Selection Guide	210
Top-Ported Low Pressure Filters	211
Tank-Mounted Low Pressure Filters	239
Special Feature Tank-Mounted Low Pressure Filters	297
Severe Duty Tank-Mounted Filters	305
Accessories For Tank-Mounted Filters.	309 311
Spin-On Low Pressure Filters	
Section 6: Suction Filters	323
Selection GuideTank-Mounted Suction Filter	324 325
In-Line Magnetic Suction Seperators	329
Tank-Mounted Magnetic Sution Seperator	331
Magnetic Inserts for Filters	332
Appendices	333
Appendix A: Filter Dirt Alarm® Selection	333
Appendix B: Viscosity Charts	340
Glossary	341

Detailed Contents: Hydraulic & Lube Filters

		Pressure psi (bar)	Flow gpm (L/min)	Page
	Top-Ported High Pressure Filters			
	NF30	3000 (210)	20 (75)	45
	NFS30	3000 (210)	20 (75)	49
	YF30	3000 (210)	25 (100)	53
	CFX30	3000 (210)	30 (115)	57
	PLD	3000 (210)	100 (380)	61
	DF40	4000 (275)	30 (115)	65
	CF40	4000 (275)	45 (170)	65
	PF40	4000 (275)	50 (190)	69
	RFS50	5000 (345)	30 (115)	73
	RF60	6000 (415)	30 (115)	77
	CF60	6000 (415)	50 (190)	81
	CTF60	6000 (415)	75 (284)	85
psi	VF60	6000 (415)	70 (265)	89
High Pressure Filters (1500 - 6500 psi)	LW60	6000 (415)	300 (1135)	93
65	Base-Ported High Pressure Filters	2000 (240)	400/450 /200/570	07
0	KF30	3000 (210)	100/150 (380/570)	97
22	KF50 TF50	5000 (345)	100/150 (380/570)	97
s (KC50	5000 (345)	40 (150)	101 105
<u>t</u> er	MKF50	5000 (345) 5000 (345)	100/150 (380/570) 200 (760)	105
正	MKC50	5000 (345)	200 (760)	109
l a			· · ·	
ess	KC65	6500 (450)	100 (380)	113
<u> </u>	MKC65	6000 (413)	300 (1136)	117
į	Hydrostatic (Bidirectional) Flow High Press			
	HS60	6000 (415)	100 (380)	121
	MHS60	6000 (415)	100 (380)	121
SECTION 3:	KFH50 (Base-Ported)	5000 (345)	70 (265)	125
ᇤ	In-Line Filters			
S	LC60	6000 (415)	8 (30)	129
	LC35	3500 (241)	15 (57)	131
	LC50	5000 (241)	9 (35)	133
	Servo Protection (Sandwich) Filters DO7, D	3000 (343)	9 (33)	133
	NOF30-05	3000 (210)	12 (45)	135
	NOF50-760	5000 (210)	15 (57)	139
	FOF60-03	6000 (415)	12 (45)	143
	Manifold Mount Filter Kits (Bowls & Instal		12 (73)	170
	NMF30	3000 (210)	20 (75)	147
	RMF60	6000 (415)	30 (115)	149
	Cartridge Elements for use in Manifold Ap	plications	33 (3)	
	14-CRZX10	3000 (210)	6 (23)	151
	20-CRZX10	3000 (210)	12 (45)	152
		. ,		


psi)	Top-Ported Medium Pressure Return Line F	ilters		
00	GH	725 (50)	35 (130)	155
1500	RLT	1000 (69)	70 (265)	161
to	KF5	500 (35)	100 (380)	165
Filters (up to	SRLT	1400 (100)	25 (100)	169
ers	Base-Ported Medium Pressure Filters			
뜵	K9	900 (60)	100 (380)	173
	2K9	900 (60)	100 (380)	177
nss	3K9	900 (60)	100 (380)	177
Pre	QF5	500 (35)	300 (1135)	181
≣	3QF5	500 (35)	300 (1135)	197
Medium Pressure	QF5i	500 (35)	120 (454)	185
ž	3QF5	500 (35)	300 (1135)	189
4:	QFD5	500 (35)	350 (1325)	193
ON	QF15	1500 (100)	450 (1700)	197
SECTION 4:	QLF15	1500 (100)	500 (1900)	201
SE	SSQLF15	1500 (100)	500 (1900)	205

Detailed Contents (cont.)

			Pressure psi (bar)	Flow gpm (L/min)	Page
	Top-Ported Low P	ressure Filters			
		IRF	100 (7)	100 (380)	211
		TF1	300 (20)	30 (120)	215
		KF3	300 (20)	100 (380)	219
		KL3	300 (20)	120 (455)	223
		LF1-2"	300 (20)	120 (455)	227
		MLF1	300 (20)	200 (760)	231
		RLD	350 (24)	100 (380)	235
(up to 500 psi)	Tank-Mounted (In	-Tank/Tank Top) Low Pressu			
00		GRTB	100 (7)	100 (380)	239
0 5		MTA	100 (7)	15 (55)	243
p t		MTB	100 (7)	35 (135)	247
		ZT	100 (7)	40 (150)	251
ters		KFT	100 (7)	100 (380)	255
SECTION 5: Low Pressure Filters		RT	100 (7)	100 (380)	259
		RTI	100 (7)	120 (455)	263
		LRT	100 (7)	150 (570)	267
P.		ART	145 (10)	225 (850)	271
, o		BRT	145 (10)	160 (600)	275
1.5		TRT	145 (10)	634 (2400)	281
Z		BFT	100 (7)	300 (1135)	289
ΙË		QT	100 (7)	450 (1700)	293
SEC	Special Feature Ta	nk-Mounted Low Pressure F	ilters		
	Internal	KTK	100 (7)	100 (380)	297
	Internal	LTK	100 (7)	150 (570)	301
	Severe Duty Tank-	-Mounted Filters			
		MRT	900 (62)	150 (570)	305
	Spin-On Low Press				
		PAF1	100 (7)	20 (75)	311
		MAF1	100 (7)	50 (190)	315
		MF2	150 (10)	60 (230)	319

	Tank-Mounted Suction Filter			
2	ST	Suction	20 (75)	325
N 6: Filters	In-Line Magnetic Suction Separators			
TION on Fil	TF-SKB	Suction	12.5 (47)	329
SEC	KF3-SKB	Suction	35 (130)	330
S	Tank-Mounted Magnetic Suction Separator			
	BFT-SKB	Suction	75 (285)	331

Filter Housings: Flow vs. Operating Pressure

Note to the Reader

The aim of our catalog is to provide the information and guidance you'll need to make informed and appropriate choices for your filtration needs.

Illustrated and easy to understand, Section 1 is now widely used as a training tool by many companies, including original equipment manufacturers for whom Schroeder provides value-added products. The revised Section 1 continues to serve as an effective "primer" on contamination control fundamentals. In this section, we also provide filtration information and guidance for selecting the optimal filter and element media for your application.

Section 1 also explains recent changes in industry standards regarding how fluid cleanliness is defined and measured. Recent technological advancements in the measurement of microscopic particles, coupled with the establishment of a new standard test dust for calibration purposes, necessitated these changes. Although the new standards may seem confusing at first, they enable more accurate sizing

of dirt particles and reduce variability in output among different automatic particle counters. The end result is more reliable data for the user.

In Section 2, you'll find extensive technical data on Schroeder's Excellement® Z-Media®, which combines high efficiency, low pressure drop and exceptional dirt holding capacity. Schroeder's design engineers have also given special attention to developing more environmentally friendly products, such as Corecentric®

elements, which contain no metal and can be crushed, shredded or burned.

Sections 3 through 6 describe the types of contamination control products and accessories we offer. Whether your hydraulic system requires pressure filters, tank-mounted filters, return-line filters, or some combination of these, this updated catalog will help you find the right Schroeder filter to do the job. Of course, every filter comes with a Schroeder original element, available in a wide variety of media and micron ratings.

Dirt Alarm®, BestFit®, Excellement®, DirtCatcher® and CoreCentric® are registered trademarks of Schroeder Industries.

Schroeder's web site, www.schroederindustries.com, is filled with helpful resources.

Replacing filter elements is simpler than ever before with our Online Cross-Reference Guide to BestFit® replacement elements. With this user-friendly guide you can match 41,000 filter elements from 150 other manufacturers with appropriate BestFit® replacements. Click the BestFit® link on our home page or got to the direct link at www.schroederindustries.info.

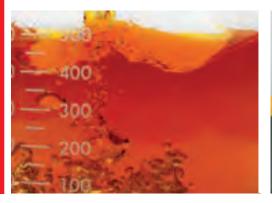
Visit Us Online...

Corporate Overview

Schroeder Industries, an ISO 9001:2015 certified company, focuses on developing filtration and fluid service products for our customers in the fluid power industry and is proud of our proven track record of providing quality products over the last 75 years. The designs you see in this catalog are the result of thousands of hours of field testing and laboratory research...and decades of experience.

Schroeder was one of the first companies to demonstrate the need for, and benefits of, hydraulic filtration. We pioneered the development of micronic filtration, helping to set performance standards in industrial fluid power systems. As a result, Schroeder is now a leader in filtration and fluid conditioning—and the proof of our expertise lies in our broad mix of unsurpassed products. Our mission statement reflects our continuing commitment to excellence:

Partnerships


Innovating products, solutions, processes and services to improve performance and efficiency in industry.

We design solutions for industry and for the success of our customers by:

- Optimizing the use of technology with applications
- Using an efficient, timely customization process to fill specific customer needs
- Increasing manufacturing capacity and streamlining operations
- Preserving our reputation for reliability
- Expanding globally to support our customers and stay current with new technologies
- Leveraging and sharing our knowledge to meet challenges openly
- Nurturing a creative, cooperative culture committed to the individual and to providing the best solutions for our customers

Our goal is to be your filtration partner. Our expertise in filtration technology, our superior filter and element manufacturing capabilities, and our dedication to customer service and product support are the reasons we're considered experts in Advanced Fluid Conditioning Solutions®.

We are committed to providing the best available filter products to meet necessary cleanliness levels at a competitive price. As a cost-effective quality producer, we can work with your purchasing department to supply contamination control technology or develop long-range pricing programs that can improve your company's bottom line.

Capabilities

Schroeder Industries has in place a strategically located international distribution network, supported by our professional and experienced sales and marketing team. Distributor personnel are trained in the important aspects of filter application by Schroeder in training sessions held at our factory and around the globe. The effectiveness of our product and service support is multiplied by utilizing Schroeder's extensive distributor network. All Schroeder Industries distributors meet very strict criteria to enhance our ability to serve the needs of our valued customers.

Schroeder's distributor network includes over 100 distributor locations throughout Europe, the United Kingdom, South Africa, Australia, Asia, North America and South America, so that customers worldwide can rely on Schroeder's exceptional support.

Schroeder Industries' corporate headquarters are located in Leetsdale, PA (USA) with an additional manufacturing facility in Cumberland, MD (USA). Filter housings and diagnostic and specialty products are manufactured at our Pittsburgh plant, while filter elements are manufactured in our Cumberland plant. Both facilities have the skilled workforce and the capacity to meet our customers' needs. Schroeder's research and development center as well as our contamination control laboratory are located at our corporate headquarters.

Schroeder's products, technical expertise, commitment to research and development, and ongoing improvements in manufacturing enable us to provide products and services that improve performance and efficiency in many major industries, including:

Product Distribution

Manufacturing and Testing

Markets Served

AGRICULTURE

AUTOMOTIVE MANUFACTURING

BULK FUEL FILTRATION

CHEMICAL PROCESSING

CONSTRUCTION

INDUSTRIAL

MACHINE

MARINE

MINING TECHNOLOGY

MOBILE VEHICLES

OFFSHORE

POWER GENERATION

PULP & PAPER

RAILROAD

STEEL MAKING

WASTE WATER
TREATMENT

Products

Engineering Laboratory

Schroeder Industries' products are continually tested using the latest ISO and NFPA test procedures in our engineering lab. Our dynamic test stands are in constant operation, subjecting our filter housings to cyclic pressure to verify their rated fatigue and burst pressures per NFPA Standard T2.6.1. Statistically sampled elements are tested to ensure fabrication integrity in the manufacturing process. They are also tested for efficiency and dirt-holding capacity in a multi-pass test stand, equipped with in-line particle counting capabilities, which are calibrated to ISO standards.

Extensive testing is conducted to ensure compatibility with various hydraulic fluids, including the newest fire-resistant fluids, per ISO 2943 Standard. Flow fatigue tests are run to evaluate the structural strength of elements, per ISO 3724 Standard.

Design and Testing Standards of Schroeder Filter Housings

Description	Standard
Burst Pressure Test	NFPA/T-2.6.1
Fatigue Testing	NFPA/T-2.6.1
Pressure/Life Rating of a Spin-On Filter	NFPA/T-3.10.17
Pressure Drop vs. Flow	ISO 3968

Design and Testing Standards of Schroeder High Efficiency Elements

Description	Standard
Element Collapse (Burst)	ISO 2941
Fabrication Integrity	ISO 2942
Material Compatibility	ISO 2943
End Load	ISO 3723
Element Flow Fatigue	ISO 3724
Pressure Drop vs. Flow	ISO 3968
Multi-Pass	ISO 16889

An Open Invitation

We invite you to present us with any specific filtration challenge you may experience. Schroeder will design and make filters to meet your specific requirements. To find out more, and/or obtain a quote, call us to speak with a sales representative or technical specialist. They can help determine the optimal filtration strategy for a given system. While the quantity of any product manufactured to fit a customer's needs will determine the economic feasibility of a particular project, in many cases, we can offer modified products in relatively small quantities at competitive prices and short lead times.

Over the years, Schroeder design engineers have encountered virtually every type of hydraulic system. We are proud of our continuing success in providing "value-added products" for our customers, that is, making or modifying our products to meet their specific needs. When customers order products

from Schroeder, they are assured of a reliable source of supply, consistent and prompt service, and direct support. Pre and post-technical service is provided to ensure customer satisfaction.

So if you're faced with a filtration dilemma, call us. Schroeder Industries: Advanced Fluid Conditioning Solutions®.

Contamination Control Fundamentals

Why Filter?

Over 70% of all hydraulic system failures are caused by contaminants in the fluid. Even when no immediate failures occur, high contamination levels can sharply decrease operating efficiency.

Contamination is defined as any substance which is foreign to a fluid system and damaging to its performance. Contamination can exist as a gas, liquid or solid. Solid contamination, generally referred to as particulate contamination, comes in all sizes and shapes and is normally abrasive.

High contaminant levels accelerate component wear and decrease service life. Worn components, in turn, contribute to inefficient system operation, seizure of parts, higher fluid temperatures, leakage, and loss of control. All of these phenomena are the result of direct mechanical action between the contaminants and the system components. Contamination can also act as a catalyst to accelerate oxidation of the fluid and spur the chemical breakdown of its constituents.

Filtering a system's fluid can remove many of these contaminants and extend the life of system components.

How a **System Gets Contaminated**

Contaminants come from two basic sources: they either enter the system from outside (ingestion) or are generated from within (ingression). New systems often have contaminants left behind from manufacturing and assembly operations. Unless they are filtered as they enter the circuit, both the original fluid and make-up fluid are likely to contain more contaminants than the system can tolerate. Most systems ingest contaminants through such components as inefficient air breathers and worn cylinder rod seals during normal operation. Airborne contaminants are likely to gain admittance during routine servicing or maintenance. Also, friction and heat can produce internally generated contamination.

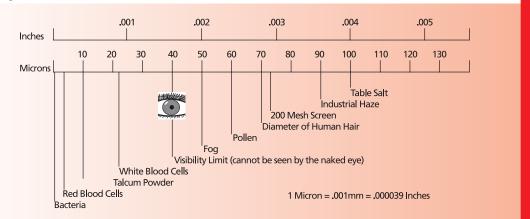
Figure 1. Typical Examples of Wear Due to Contamination

Vanes for Vane Pump

Relief Valve Piston

Vane Pump Cam Ring

Size of Solid **Contaminants**

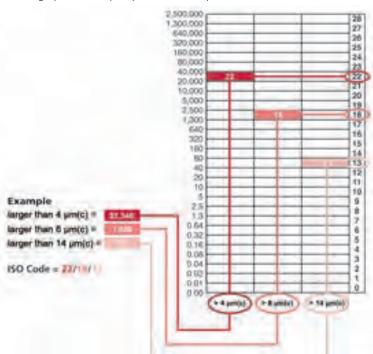

The size of solid particle contaminants is commonly measured in micrometers, µm, (usually referred to as microns, μ). A micron is a unit of length equal to one millionth of a meter or about .00004 inch. Particles that are less than 40 µ cannot be detected by the human eye.

Substance	Microns	Inches
Grain of table salt	100 μ	.0039"
Human hair	70 μ	.0027"
Talcum powder	10 μ	.00039"
Bacteria (average)	2 μ	.000078"

Figure 2 shows the sizes of some common substances. To gain some perspective, consider the diameters of the following substances:

A micron rating identifies the size of particles that a particular filtration media will remove. For instance, Schroeder Z10 filter media is rated at β10 ≥1000, meaning that it can remove particles of 10 µ and greater at 99.9% efficiency.

Figure 2. Sizes of Known Particles in Inches and Microns



In hydraulic fluid power systems, power is transmitted and contained through a liquid under pressure within an enclosed circuit. These fluids all contain a certain amount of solid particle contaminants. The amount of particulate contaminants present in a hydraulic or lubrication system's fluid is commonly referred to as its cleanliness level.

How Contaminants are Measured and Reported

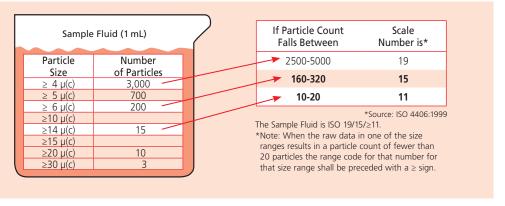
ISO 4406:1999 provides guidelines for defining the level of contamination present in a fluid sample in terms of an ISO rating. It uses three scale numbers, representing the number of particles greater than or equal to 4 μ (c), 6 μ (c), and 14 μ (c) in size per 1 mL of sample fluid.

Figure 3 shows the graph used to plot particle counts per ISO 4406:1999.

- Reproducibility below scale number 8 is affected by the actual number of particles counted in the fluid sample. Raw counts should be more than 20 particles. If this is not possible, then refer to bullet below.
- When the raw data in one of the size ranges results in a particle count of fewer than 20 particles, the scale number for that size range shall be labeled with the symbol \geq .

EXAMPLE: A code of 14/12/≥7 signifies that there are more than 80 and up to and including 160 particles equal to or larger than 4 μ(c) per mL and more than 20 and up to and including 40 particles equal to or larger than 6 μ(c) per mL. The third part of the code, ≥7 indicates that there are more than 0.64 and up to and including 1.3 particles equal to or larger than 14 μ (c) per mL. The \geq symbol indicates that less than 20 particles were counted, which lowers statistical confidence. Because of this lower confidence, the 14 μ (c) part of the code could actually be higher than 7, thus the presence of the \geq symbol.

ISO Scale Numbers-ISO 4406:1999


Cleanliness Levels-ISO 4406:1999

The following example shown in Figure 4 illustrates the cleanliness level, or ISO rating, of a typical petroleum-based fluid sample using the ISO Code 4406:1999 rating system.

The fluid sample contains a certain amount of solid particle contaminants, in various shapes and sizes.

Since the number of 4 μ (c) particles falls between 2500 and 5000, the first ISO range number is 19 using Table 1. The number of 6 μ (c) particles falls between 160 and 320 particles, so the second ISO range number is 15. The number of 14 μ (c) particles falls between 10 and 20, making the third range number 11. Therefore, the cleanliness level for the fluid sample shown in Figure 4 per ISO 4406:1999 is 19/15/≥11.

Figure 4. Determining the ISO Rating of a Fluid Using ISO 4406:1999

Required Cleanliness Levels

The pressure of a hydraulic system provides the starting point for determining the cleanliness level required for efficient operation. Table 2 provides guidelines for recommended cleanliness levels based on pressure. In general, Schroeder defines pressure as follows:

Low pressure: 0-500 psi (0-35 bar) Medium pressure: 500-2999 psi (35-206 bar) High pressure: 3000 psi (206 bar) and above

A second consideration is the type of components present in the hydraulic system. The amount of contamination that any given component can tolerate is a function of many factors, such as clearance between moving parts, frequency and speed of operation, operating pressure, and materials of construction. Tolerances for contamination range from that of low pressure gear pumps, which normally will give satisfactory performance with cleanliness levels typically found in new fluid (ISO 19/17/14), to the more stringent requirements for servo-control valves, which need oil that is eight times cleaner (ISO 16/14/11).

Today, many fluid power component manufacturers are providing cleanliness level (ISO code) recommendations for their components. They are often listed in the manufacturer's component product catalog or can be obtained by contacting the manufacturer directly. Their recommendations may be expressed in desired filter element ratings or in system cleanliness levels (ISO codes or other codes). Some typically recommended cleanliness levels for components are provided in Table 3.

Table 2. Cleanliness Level Guidelines Based on Pressure

System Type	Recommended Cleanliness Levels (ISO Code)
Low pressure – manual control (0 - 500 psi)	20/18/15 or better
Low to medium pressure – electrohydraulic controls	19/17/14 or better
High pressure – servo controlled	16/14/11 or better

Table 3. Recommended Cleanliness Levels (ISO Codes) for Fluid Power Components

Components	Cleanliness Levels (ISO Code) 4 μ(c)/6 μ(c)/14 μ(c)
Hydraulic Servo Valves	15/13/11
Hydraulic Proportional Valves	16/14/12
Hydraulic Variable Piston Pump	16/14/12
Hydraulic Fixed Piston Pump	17/15/12
Hydraulic Variable Vane Pump	17/15/12
Hydraulic Fixed Vane Pump	18/16/13
Hydraulic Fixed Gear Pump	18/16/13
Ball Bearings	15/13/11
Roller Bearings	16/14/12
Journal Bearings (>400 rpm)	17/15/13
Journal Bearings (<400 rpm)	18/16/14
Gearboxes	18/16/13
Hydrostatic Transmissions	16/14/11
Pumps	16/14/12

This table is based on data shown in various hydraulic component manufacturer's catalogs. Contact Schroeder for recommendations for your specific system needs.

Table 4	l. Cleanline	ss Cla	ss Com	parisons

	Table 4. Clearminess Class Comparisons					
ISO 4409:1999	SAE AS 4059:E	NAS 1638-01/196	MIL-STD 1246A 1967	ACFTD Gravimetric Level-mg/L		
24						
23/20/18		12				
22/19/17	12	11				
21/18/16	11	10				
20/17/15	10	9	300			
19/16/14	9	8				
18/15/13	8	7	200	1		
17/14/12	7	6				
16/13/11	6	5				
15/12/10	5	4		0.1		
14/11/9	4	3	100			
13/10/8	3	2				
12/9/7	2	1		0.01		
11/8/6	1	0				
10/7/5	0	00				
8/7/4	00		50			
5/3/01			25			
2/0/0			5			

Required . Cleanliness Levels

(continued)

For your convenience, Table 4 provides a cross reference showing the approximate correlation between several different scales or levels used in the marketplace to quantify contamination. The table shows the code levels used for military standards 1638 and 1246A, as well as the SAE AS4059 standard.

Element Technical Data Fundamentals

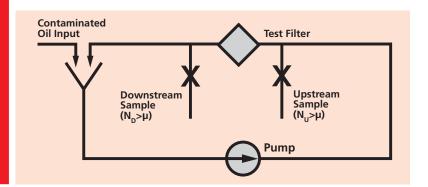
Performance Specifications/ **Filtration Ratings**

Schroeder filter elements meet a wide variety of requirements in today's workplace, from the simplest to the most sophisticated fluid power systems. Established industry standards enable users to select the optimal filter element for any application.

When evaluating the performance of hydraulic filter elements, the most important parameters to consider are:

- (a) efficiency
- (b) beta stability
- (c) dirt holding capacity
- (d) pressure drop vs. flow
- (a) Efficiency, or filtration ratio, expressed by "Beta" (B) relates to how well an element removes contamination from fluid. Higher efficiency translates to cleaner oil, better protection of system components, less down time for repair, and lower maintenance costs.
- (b) Beta stability is defined as an element's ability to maintain its expected efficiency as differential pressure across the element increases. Differential pressure will increase as contamination is trapped, or with an increase in fluid viscosity (cold start). Beta stability is important because it relates to how well an element will perform in service over time. When the element is loaded with contamination, or when it is subjected to cold starts, will it perform as well as it did when new?
- (c) Dirt holding capacity (DHC) is the amount of contamination that an element can trap before it reaches a predetermined "terminal" differential pressure. Dirt holding capacity is related to element life. Since elements with higher DHC need changed less frequently, DHC has a direct impact on the overall cost of operation. When selecting filter elements, it is beneficial to compare DHC of elements with similar particle removal efficiency.
- (d) Pressure Drop vs. Flow is simply a measure of resistance to fluid flow in a system. It is important to consider the initial pressure drop (Δp) across the filter element (and housing). Ideally, a filter element should be sized so that the initial pressure drop across the clean element (plus the filter housing drop) is less than half the bypass valve setting in the filter housing.

When selecting a filter element for your system, be sure to consider all four of these performance criteria. If an element is strong in three areas, but weak in another, it may not be the right choice. At every level of filtration, Schroeder's Excellement® Z-Media® elements offer the best combination of high efficiency, high beta stability, high dirt holding capacity, and low pressure drop.


The Multi-pass Test

Filter element efficiency ratings, beta stability, and capacities are determined by conducting a multi-pass test under controlled laboratory conditions. This is a standard industry test with procedure published by the International Standards Organization (ISO 16889). The multi-pass test yields reproducible test data for appraising the filtration performance of a filter element including its particle removal efficiency. These test results enable the user to: (1) compare the quality and specifications offered by various filter element suppliers and (2) select the proper filter element to obtain the optimal contamination control level for any particular system.

Hydraulic fluid (Mil-H-5606) is circulated through a system containing the filter element to be tested. Additional fluid contaminated with ISO MTD Test Dust is introduced upstream of the element being tested. Fluid samples are then extracted upstream and downstream of the test element.

Dirt holding capacity is defined as the total grams of ISO MTD Test Dust added to the system to bring the test filter element to terminal pressure drop.

Figure 5. Multi-Pass Test Schematic

The filtration ratio (more commonly referred to as the Beta ratio) is, in fact, a measure of the particle capture efficiency of a filter element.

Per ISO 16889

$$\beta_{X(C)} = \frac{\text{number of particles upstream } @ x(c) \text{ microns}}{\text{number of particles downstream } @ x(c) \text{ microns}}$$

where x(c) is a specified particle size.

Example:
$$^{\beta}10 = \frac{400}{100} = 4$$

This particle capture efficiency can also be expressed as a percent by subtracting the number 1 from the Beta (in this case 4) and multiplying it by 100:

Efficiency₁₀ =
$$\frac{(4-1)}{4}$$
 x 100 = 75%

The example is read as "Beta ten is equal to four, where 400 particles, 10 microns and larger, were counted upstream of the test filter (before) and 100 particles, 10 microns and larger, were counted downstream of the test filter (after)."

The filter element tested was 75% efficient in removing particles 10 microns and larger.

To calculate a filter element's percent efficiency, subtract 1 from the Beta, divide that answer by the Beta, then multiply by 100.

Efficiency

Efficiency /

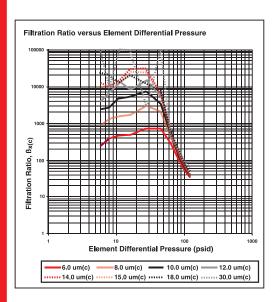
(Beta)

Filtration Ratio

Example Step 1: $\beta 10(c) > +1000$ Step 2: 1000 - 1 = 999

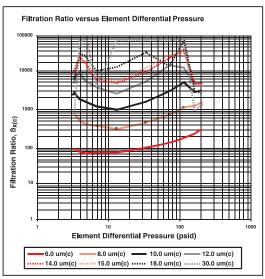
Step 3: $999 \div 1000 = .999\%$ Step 4: $.999 \times 100 = 99.9\%$

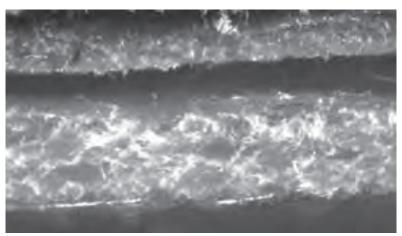
According to ISO 16889, each filter manufacturer can test a given filter element at a variety of flow rates and terminal pressure drop ratings that fit the application, system configuration and filter element size. Results may vary depending on the configuration of the filter element tested and the test conditions.


Currently, there is no accepted ISO, ANSI, or NFPA standard regarding absolute ratings. Some filter manufacturers use $\beta_X(c) \geq 75$ (98.7% efficiency) for their absolute rating. Others use $\beta_X(c) \geq 100$ (99.0% efficiency), $\beta_X(c) \geq 200$ (99.5% efficiency), or $\beta_X(c) \geq 1000$ (99.9% efficiency). Performance of Schroeder elements is shown in the Element Performance Chart for each filter housing in Sections 3 through 8 at a number of filtration ratios to allow the user to evaluate our performance against that of our competitors.

Filtration Ratio

Beta Stability


Beta stability is defined as an element's ability to maintain its expected efficiency as differential pressure across the element increases. Differential pressure will increase as contamination is trapped, or with an increase in fluid viscosity. An element's beta stability is displayed in the Filtration Ratio (Beta) vs. Differential Pressure curve from a typical multi-pass test report per ISO 16889. Good beta stability is demonstrated by consistent or improving efficiency as differential pressure builds across the element. Conversely, decreasing efficiency as pressure builds is a sign of poor stability. Poor beta stability is an indication of a filter element's structural deficiency. It is a sign of potential problems in a "real world" situation. Contamination, "cold starts", and flow surges can all create high differential pressure across an element that may cause efficiency to decrease if it is not structurally sound. In cases of "cold starts" and flow surges, the media structure in elements with poor stability can become permanently damaged in milliseconds. The result is lower efficiency and decreased system protection without warning to the operator. High beta stability results when an element is well-built with quality, durable materials. Strength of filter media and reinforcement layers, impervious seaming, proper end cap adhesion, and a rigidly supported structure all play a part in an element's beta stability. Excellement® media structure typically maintains beta stability over 100 psi.


Example of poor beta stability – efficiency declines as differential pressure increases.

Example of Excellement® beta stability

– efficiency does not decline as differential pressure increases.

Microscopic Photo - 50x magnification

Top: competitor's media Bottom: Schroeder Excellement® Z-Media® Thin, weak media cannot withstand differential pressure as well as Z-Media®.

This photo shows a comparison of our competitors filtering layer media versus our Schroeder Excellement® Z-Media®. Schroeder Z-Media® offers better depth filtration to withstand a higher differential pressure and entrap more contaminant / particles.

Dirt holding capacity (DHC) is the amount of contaminant (expressed in grams) the element will retain before it goes into bypass. All other factors being equal, an element's DHC generally indicates how long the element will operate

until it needs to be replaced. The element's life span is directly related to the cost of operating the filter.

Dirt holding capacity, sometimes referred to as "retained capacity," is a very important and often overlooked factor in selecting the right element for the application. The dirt holding capacity of an element is measured in grams of ISO medium test dust contaminant as determined from the multi-pass test (ISO 16889). When selecting filter elements, it is beneficial to compare the dirt holding capacities of elements with similar particle removal efficiencies.

Dirt Holding Capacity

When sizing a filter, it is important to consider the initial differential pressure (ΔP) across the element and the housing. Elements offering a lower pressure drop at a high Beta efficiency are better than elements with a high ΔP at the same efficiency. At every level of filtration, Schroeder's Excellement® Z-Media® elements offer the best combination of high efficiency, high stability, high dirt holding capacity, and low pressure drop. The pressure drop of an element is determined by testing according to ISO 3968.

Pressure Drop

The collapse (crush) rating of a filter (determined by ISO 2941/ANSI B93.25) represents the differential pressure across the element that causes it to collapse. The collapse rating of a filter element installed in a filter housing, with a bypass valve, should be at least two times greater than the full flow bypass valve pressure drop. The collapse rating for filter elements used in filter housings with no bypass valve should be at least the same as the setting of the system relief valve upstream of the high-crush element. When a high collapse element becomes clogged with contamination all functions downstream of the filter will become inoperative.

Collapse Rating

Element Media Selection Considerations

The Right Media for the Right Application = Job Matched Filtration

Filtration Application Guidelines

Selecting the proper Schroeder media for your application is easy if you follow these simple guidelines.

Step 1. Remember that the key to cost effective contamination control is to maintain the system's cleanliness at the tolerance level of the system's most sensitive component. So, the first step is to identify the most sensitive component.

Step 2. Determine the desired cleanliness level (ISO Code) for that component by referring to Figure 3 on page 13 or by contacting the component manufacturer directly.

Step 3. Identify the Schroeder filter medium referencing Table 6 that will meet or exceed the desired cleanliness level.

Step 4. Remember to regularly check the effectiveness of the selected media through the use of contamination monitoring equipment.

Table 6. Schroeder Element Media Recommendations

Schroeder
Media
Z25
Z10
Z5
Z3
Z1

Effect of Ingression

Filter element life varies with the dirt holding capacity of the element and the amount of dirt introduced into the circuit. The rate of this ingression in combination with the desired cleanliness level should be considered when selecting the media to be used for a particular application. Table 7 provides recommendations accordingly.

The amount of dirt introduced can vary from day to day and hour to hour, generally making it difficult to predict when an element will become fully loaded. This is why we recommend specifying a Dirt Alarm®.

Schroeder-designed Dirt Alarms® provide a vital measure of protection for your system by indicating when the filter element needs to be changed or cleaned. Schroeder filters are available with visual, electrical and electrical-visual combination Dirt Alarms[®]. These indicators may also be purchased as separate items. For more information on Dirt Alarms®, see Appendix A.

Table 7. Recommended Schroeder Media to **Achieve Desired Cleanliness Levels Based on Ingression Level**

Desired Cleanliness Levels (ISO Code)	Ingression Rate	Schroeder Element Medium
20/18/15	High	Z25
19/17/14	Low	Z25
19/17/14	High	Z10
18/16/13	Low	Z10
18/16/13	High	Z5
15/13/10	Low	Z5
15/13/10	High	Z3
14/12/9	Low	Z3
14/12/9	High	Z1
13/12/9	Low	Z1

To obtain the desired cleanliness level (ISO Code) using the suggested Schroeder filter medium, it is recommended that a minimum of one-third of the total fluid volume in the system pass through the filter per minute. If fluid is filtered at a higher flow rate, better results may be achieved. If only a lesser flow rate can be filtered, a more efficient media will be required.

Systems operating in a clean environment, with efficient air-breather filters and effective cylinder rod wiper seals, may achieve the desired results at a lower turnover rate. Systems operating in a severe environment or under minimal maintenance conditions should have a higher turnover. Turnover must be considered when selecting the location of the system's filter(s).

Since the pressure drop versus flow data contained in our filter catalog is for fluids with a viscosity of 150 SUS (32.0 cSt), and a specific gravity of .86, we are often asked how to size a filter with a viscosity other than 150 SUS (32.0 cSt) or a specific gravity other than .86. In those instances where the viscosity or specific gravity is significantly higher, it may be necessary to use a larger element. To make this determination, we need to calculate the life of the element, using the following equation:

EL = RC - (H + E)

Where:

EL = Element Life (expressed in psi) H = Housing pressure drop RC = Relief valve cracking pressure E = Element pressure drop

- 1. The housing pressure drop can be read directly from the graph. This value is not affected by viscosity or the number of elements in the housing, since housing flow is turbulent.
- 2. The element pressure drop is directly proportional to viscosity, since element flow is laminar.

Schroeder's "rule of thumb" for element life, as calculated from the above equation, is to work towards a differential pressure drop that is no more than half (50%) of the bypass setting.

The interval between element change outs can be extended by increasing the total filter element area. Many Schroeder filters can be furnished with one, two, or three elements or with larger elements. By selecting a filter with additional element area, the time between servicing can be extended for little additional cost.

Schroeder filters have been used successfully to filter a variety of fire resistant fluids for over five decades. Filtering these fluids requires careful attention to filter selection and application. Your fluid supplier should be the final source of information when using these fluids. The supplier should be consulted for recommendations regarding limits of operating conditions, material and seal compatibility, and other requirements peculiar to the fluid being used within the conditions specified by the fluid supplier.

High Water Content Fluids

High water content fluids consist primarily of two types: water and soluble mineral base oil, and water with soluble synthetic oil. The oil proportion is usually 5%, but may vary from as low as 2% to as high as 10%.

Standard Schroeder Z1, Z3, Z5, Z10, and Z25 elements are compatible with both types of high water content fluids. Filter sizing should be the same as with 150 SUS (32 cSt) mineral based hydraulic oil. Z1 and Z3 elements may be used; however, element change outs will be more frequent. Some special factors that need to be considered in the selection process include the following:

- All aluminum in the filter housing should be anodized. This can be accomplished by using the "W" adder as shown in the filter model number selection chart.
- When using 95/5 fluids, check with fluid supplier for compatibility with aluminum.
- Buna N or Viton® seals are recommended.
- The high specific gravity and low vapor pressure of these fluids create a potential for severe cavitation problems. Suction filters or strainers should not be used. The Schroeder Magnetic Separator (SKB), page 327, with its low pressure drop, is recommended for pump protection from ferrous or large particles.

Invert Emulsions

Invert emulsions consist of a mixture of petroleum based oil and water. Typical proportions are 60% oil to 40% water. Standard Schroeder filters with Z10 and Z25 media elements are satisfactory for use with these fluids. Filters should be sized conservatively for invert emulsions. These fluids are non-Newtonian their viscosity is a function of shear. We recommend up to twice the normal element area be used as space and other conditions permit.

Amount of Fluid Filtered

Sizing a Filter Element

Fluid Compatibility: **Fire Resistant Fluids**

Fluid Compatibility: **Fire Resistant** Fluids (cont.)

Some special factors that need to be considered in the selection process include the following:

- Potential exists for cavitation problems with invert emulsions similar to high water based fluids. SKB suction separators are recommended for pump protection from ferrous or large particles.
- Buna N or Viton® seals are recommended.

Water Glycols

Water glycols consist of a mixture of water, glycol, and various additives. Schroeder Z3, Z5, Z10 and Z25 elements are satisfactory for use with these fluids. Some special factors that need to be considered in the selection process include the following:

- All aluminum in the filter should be anodized. This can be accomplished by using the "W" option as shown in the filter model number selection chart.
- Potential exists for cavitation problems with water glycols similar to high water based fluids. SKB suction separators are recommended for pump protection from ferrous or large particles.
- Buna N or Viton® seals are recommended.

Phosphate Esters

Phosphate esters are classified as synthetic fluids. All Schroeder filters and elements can be used with most of these fluids. Sizing should be the same as with mineral based oils of similar viscosity. Some special factors that need to be considered in the selection process include the following:

- For phosphate esters, specify EPR seals (designated by "H" seal option) for all elements. As a general rule, all Z-Media[®] (synthetic) is compatible and 10 and 25 μ only E media (cellulose) with phosphate esters.
- For Skydrol®, only 3, 5, 10, and 25 µ Z-Media® (synthetic) should be used, and "H.5" should be designated as the seal option. The "H.5" seal designation calls for EPR seals and stainless steel wire mesh in element construction.

Pressure Drop Correction for Specific Gravity

Pressure drop curves shown in this catalog are predicated on the use of petroleum based fluid with a specific gravity of 0.86. The various fire resistant fluids discussed in this section have a specific gravity higher than 0.86, which affects pressure drop. Use the following formula to compute the correct pressure drop for the higher specific gravity:

Corrected pressure drop =
$$\frac{\text{Fluid specific gravity}}{0.86} \times \text{Catalog pressure drop}$$

Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol® is a registered trademark of Solutia Inc.

7 Steps to Selecting a Filter

In the new era, systems are getting smaller and more compact, causing flow rates in hydraulic reservoirs to decrease, as well as a tighter space for overall reservoir components.

Without a properly sized filter and element in your machine's reservoir, operators can experience occurrences such as: foaming, cavitation, shortened fluid lifespan, poor response time from hydraulic valves, increase in replacement filter elements, and more valve and pump repairs.

In this section, we will walk you through our **7 Steps for Choosing the Correct Filtration**.

Example Parameters: A piston pump and servo system with 20 gpm (76 L/min) pump flow, 30 gpm (144 L/ min) return flow, 4000 psi (275 bar) system pressure, and a total system volume of 60 gallons (227 liters), with a non-pressurized reservoir. The fluid is 150 SUS.

Step 1: "Operating Pressures"

Determine the operating pressure of the system you are looking to apply filtration to.

Step 2: "Flow Rate"

Look at all of the characteristics of the fluid that is needing the filtration, including the flow

Step 3: "MVP Components"

Determine what component is the most critical to your operation.

Step 4: "ISO Level"

Reference our chart on page 13 to determine the recommended ISO level of your MVP component (determined in Step 3). This will help you select what media type will help you achieve your cleanliness goal.

Step 5: "Fluid Type"

Ask yourself "what type of fluid is being filtered?" and "what is my main contamination type?" (Reference contamination types on page 16).

Step 6: "Temperature"

Determine the highest and lowest temperatures of your operating fluid.

Step 7: "Piecing It All Together"

Based on the previous steps, you can now take the information learned, calculate overall system differential pressure, and determine the right choice for filtration.

By following these simple steps, we can guarantee you will see cleaner fluid. In addition, all major hydraulic components should be working to expectation, last longer, and ultimately save you and your company money.

Seven Steps to Selecting a Filter

Filter Selection Considerations

Filter Location

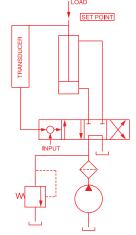


Figure 6(a). Pressure Filtration Circuit

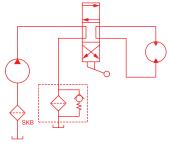


Figure 6(b). Return Line Filtration Circuit

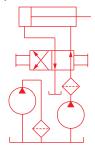
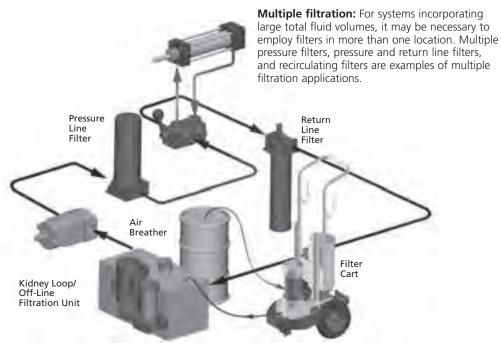


Figure 6(c). Re-circulating Filtration Circuit


Pressure filtration: Pressure filters usually produce the lowest system contamination levels to assure clean fluid for sensitive high-pressure components and provide protection of downstream components in the event of catastrophic failures. Systems with high intermittent return line flows may need only be sized to match the output of the pump, where the return line may require a much larger filter for the higher intermittent flows. See Figure 6(a).

Return line filtration: Return line filters are often considered when initial cost is a major concern. A special concern in applying return line filters is sizing for flow. Large rod cylinders and other components can cause return line flows to be much greater than pump output. Return lines can have substantial pressure surges, which need to be taken into consideration when selecting filters and their locations. See Figure 6(b).

Re-circulating filtration: While usually not recommended as a system's primary filtration (due to the high cost of obtaining adequate flow rates) re-circulating, or off-line, filtration is often used to supplement on-line filters when adequate turnover cannot be obtained with the latter. It is also often an ideal location in which to use a water removal filter. Off-line re-circulating filters normally do not provide adequate turnover flow rates to handle the high contamination loading occasioned by component failures and/or inefficient maintenance practices. See Figure 6(c).

Suction filtration: Micronic suction filters are not recommended for open-loop circuits. The cavitation these filters can cause significantly outweighs any advantage obtained by attempting to clean the fluid in this part of the system. SKB magnetic suction separators are recommended, as they will protect the pump from large and ferrous particles, without the risks of cavitation.

Breather filtration: Efficient filter breathers are required for effective contamination control on non-pressurized reservoirs and should complement the liquid filtration component.

Filtration Selection **Exercise**

Parameters: A piston pump and servo system with 20 gpm (76 L/min) pump flow, 30 gpm (114 L/min) return flow, 4000 psi (275 bar) system pressure, and total system volume of 60 gallons (227 liters), with a non-pressurized reservoir.

Step 1 example. The servo valve is the system's most sensitive component. Referring to Figures 2 and 3 (page 13), you can see that a cleanliness level (ISO Code) of 16/14/11 or better is recommended for a high pressure system containing a servo valve.

Step 2 example. Table 8 recommends the Schroeder Z5 element media or finer to achieve a cleanliness level of 16/14/11.

Step 3 example. A combination of a pressure filter upstream of the servo valve and a return line filter would provide cost effective contamination control for servo systems.

Step 4 example. Filter model DF40, shown on page 65, is selected as the appropriate pressure filter because of its 30 gpm and 4000 psi capacities. A look at the Element Selection Chart for the DF40 located on page 67 verifies that the CZ5 element will handle 20 gpm, and the appropriate model number is DF40-1CZ5.

The ZT in-tank return line filter is selected for the 30 gpm return flow and the Z5 media. As shown in the model selection chart for the ZT on page 266, the proper model number to meet the specifications is ZT-8ZZ5.

Step 5 example. Using our Accessories Catalog; L-4329, select the ABF-3/10-S breather/strainer.

Step 6 example. Implement the appropriate manufacturing, assembly and maintenance contamination control procedures.

Step 7 example. Check start-up and ongoing system cleanliness (ISO Codes). Schroeder offers oil sampling kits that can be forwarded to a lab for particle counting and determination of cleanliness levels.

Table 8. Schroeder Element Media Recommendations

Desired Cleanliness Levels (ISO Code)	Schroeder Media
20/18/15-19/17/14	Z25
19/17/14-18/16/13	Z10
18/16/13-15/13/10	Z5
15/13/10-14/12/9	Z3
14/12/9-13/11/8	Z1

Rated Fatigue Pressure

The application of individual filters should take fatigue ratings into consideration when there are flow or pressure variations creating pressure peaks and shock loads.

Typical hydraulic systems that use highly repetitive operations include plastic injection molding machines, die-cast machines, and forging and stamping press systems. In these and other similar applications, rated fatigue pressure should be considered when selecting a filter.

It has been common practice in the fluid power industry to establish component ratings for maximum operating pressure based on the minimum yield pressure, which is usually one third of the minimum yield pressure for higher-pressure components and one fourth of the minimum yield pressure for lower-pressure components. This rating method has proved satisfactory for many years, but it does not directly address the subject of fatigue.

The National Fluid Power Association has introduced a method (NFPA T2.6.1) for verifying the fatigue pressure rating of the pressure-containing envelope of a metal fluid power component. In this method, components are cycled from 0 to test pressure for 1 million cycles (10 million cycles is optional). The rated fatigue pressure (RFP) is verified by testing. We establish the desired RFP from design, then we calculate the cycle testing pressure (CTP), and then conduct tests at CTP per 1,000,000 cycles.

The T2.6.1 Pressure Rating document is available from the National Fluid Power Association, 3333 N. Mayfair Road, Milwaukee, WI 53222-3219.

Table 9. Fatique Pressure Ratings

lable 3. Fatigue Flessure Ratings								
Rated Fatigue Pressure psi (bar)	Model	Rated Fatigue Pressure psi (bar)						
2400 (165)	LW60	5800 (400)						
1800 (125)	ZT	90 (6)						
1800 (125)	RT/LRT	90 (6)						
2500 (173)	QT/IRF	100 (7)						
5000 (350)	KF3	290 (20)						
1800 (125)	KL3	300 (20)						
3500 (240)	TF1	270 (19)						
4000 (276)	LF1/MLF1	250 (17)						
3300 (230)	RLD	350 (24)						
2500 (170)	RLT	750 (52)						
3500 (240)	GH	725 (50)						
3500 (240)	GHHF	725 (50)						
3500 (240)	SRLT	750 (52)						
3500 (240)	KF8/QF5/3QF5	500 (35)						
5500 (380)	K9/2K9/3K9	750 (52)						
4000 (275)	QF15/QLF15/SSQLF15	800 (55)						
4000 (275)	HS60	6000 (415)						
6000 (415)								
	Rated Fatigue Pressure psi (bar) 2400 (165) 1800 (125) 1800 (125) 2500 (173) 5000 (350) 1800 (125) 3500 (240) 4000 (276) 3300 (230) 2500 (170) 3500 (240) 3500 (240) 3500 (240) 3500 (240) 3500 (240) 3500 (240) 3500 (240) 4000 (275) 4000 (275)	Rated Fatigue Pressure psi (bar) Model 2400 (165) LW60 1800 (125) ZT 1800 (125) RT/LRT 2500 (173) QT/IRF 5000 (350) KF3 1800 (125) KL3 3500 (240) TF1 4000 (276) LF1/MLF1 3300 (230) RLD 2500 (170) RLT 3500 (240) GH 3500 (240) SRLT 3500 (240) KF8/QF5/3QF5 5500 (380) K9/2K9/3K9 4000 (275) QF15/QLF15/SSQLF15 4000 (275) HS60						

Contact Factory For: RFS50, FOF30, NOF30-05, MTA, MTB, KT, BFT, PAF1, MAF1, MF2, RTI, KTK, LTK, QF5 and QFD5 Fatigue Ratings. All water service and GeoSeal® models match their standard model for Rated Fatigue Pressure.

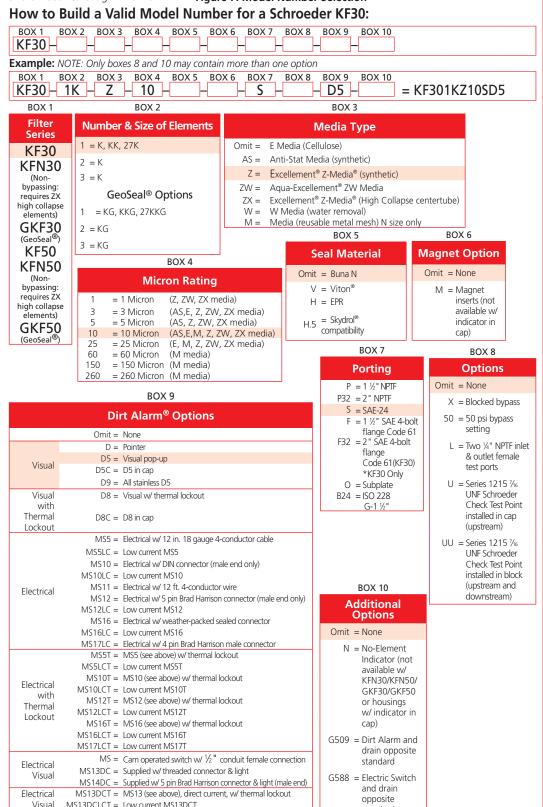
Manifold Mounting

In some filtration applications, it is advantageous to have the inlet and outlet ports mount directly onto a block without any hydraulic hose in between. Schroeder offers several such manifold-mounted filter models, including NFS30, YF30, PF40, LC50 DF40, RFS50, KF30, TF50, KC50, and KFH50. Drawings for these porting options are labelled "Optional Subplate Porting" and are included on respective catalog pages.

No-Element Indicator

The No-Element Indicator is a unique, patented signaling device designed to alert the user if no filter element is present in the housing. This virtually eliminates any possible confusion on the part of the user that the filter contains an element and is functioning in a normal manner.

The tamper proof system utilizes a patented internal valve design. If the element is not installed in the housing, the valve restricts flow, causing a high pressure drop. The high pressure drop, in turn, causes the Schroeder Dirt Alarm[®] to indicate that the element is not installed in the housing.


The only way to deactivate the indicator is to install the element in the housing.

This feature is available in the following filter models: RT, TF1, KF3, CF40, DF40, CF60, TF50, KF30, KF50, KC50, KC65, and MKF50 that are equipped with a Schroeder Dirt Alarm®. No-element indicator is not available when the indicator is placed in the cap in base-ported filters.

Ordering Information

For each filter that is shown in Sections 3, 4, 5, and 6 there is a Model Number Selection Chart. This chart lists all the configurations and accessories available for that specific filter.

Model numbers for all Schroeder filters are formulated by listing the appropriate codes, from left to right, according to the designated boxes shown in the chart. The letter or letter/number combination identifies the basic filter series. For instance, as shown in Figure 7, KF30-3KZ3-P-D5 designates a KF30 high-pressure, base-ported filter with three synthetic 3 μ elements, Buna N seals, 1½" NPTF porting, and a visual cartridge Dirt Alarm®. **Figure 7. Model Number Selection**

with

Thermal

Lockout

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

MS14DCLCT = Low current MS14DCT

Model Number Selection

NOTES:

- Box 2. Number of elements must equal 1 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length.
- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol® is a registered trademark of Solutia Inc.
- Box 7. For options F & F32, bolt depth .75" (19 mm).
 - For option O, O-rings included; hardware not included.
- Box 8. X and 50 options are not available with KFN30.
- Box 9. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.
- Box 10. Options N, G509 and G588 are not available with KFN30. N option should be used in conjunction with dirt alarm.

standard

Element **Selection Chart** for Flow Requirements

For each filter shown in the catalog, there is an element selection chart to determine the correct element to be used for a particular flow requirement (see Figure 8 for an example). The chart uses a petroleum-based hydraulic fluid with 150 SUS viscosity.

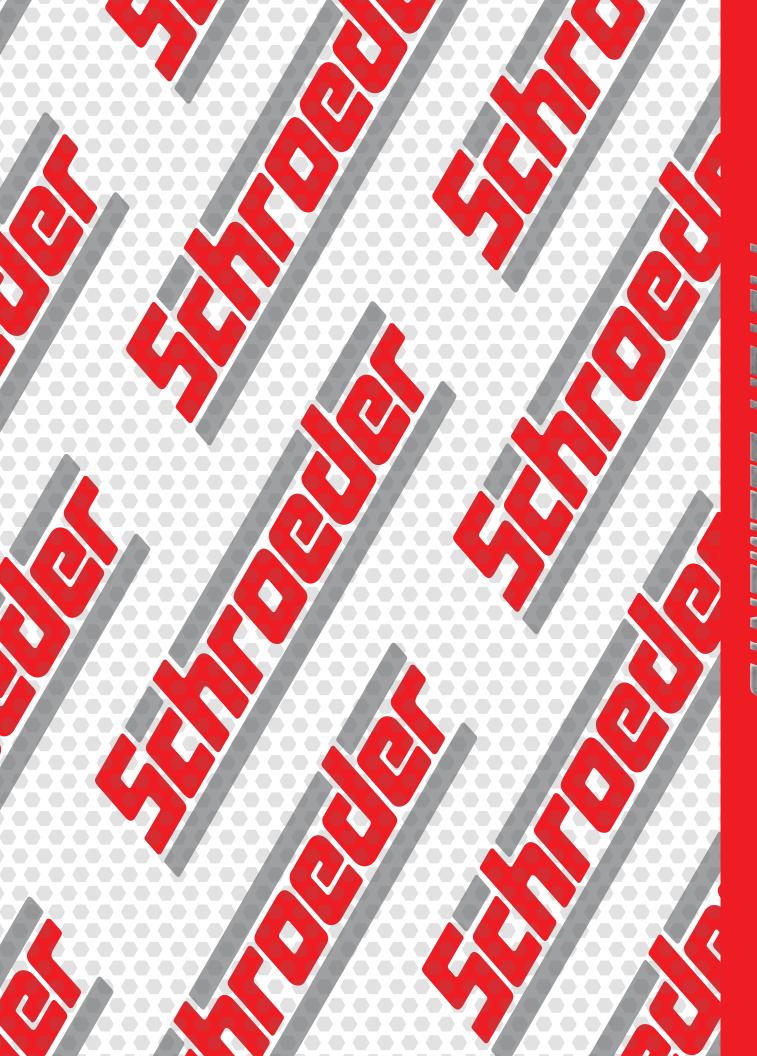
The process involves the following: Determine the working pressure of the system (3000 psi in this example) and the maximum flow (75 gpm). Then select the media (Z-Media®), and the micron filtration (3 μ). For example, the filter selected, following the above steps, is a KF30-2KZ3-P-D5. If the system pressure is 5000 psi and all other parameters are the same, then the model number would be KF50-2KZ3-P-D5.

Figure 8. KF30 Housing and Element Selection Chart for Flow Requirement

	Elem	nent	Element selections are predicated on the use of 150 SUS (32 cSt)									
Pressure	Series	Part No.	petroleum bas	petroleum based fluid and a 40 psi (2.8 bar) bypass valve.								
		K3	1K3		2K3		3K3		See MFK50			
	E Media	K10	1K10		2K	10	3K10	3K′	10	Se	ee MFK50	
	ivieula	K25	1K25			2K25						
То	Z Media	KZ1	1KZ1 2KZ1			2KZ1			3KZ1			
3000 psi (210 bar)		KZ3	1KZ3			2KZ3		3	3KZ3			
(= : : : : : : : : : : : : : : : : : : :		KZ5	1KZ5			2	KZ5		3KZ5			
		KZ10		1KZ10				2KZ	10	3K10		
		KZ25			2KZ	25					2KZ25	
	Flow	gpm (25	50)	75	100)	12	5	150	
	FIOW	(L/min)	100	2	00	300		400		500	600	

Shown above are the elements most commonly used in this housing. requires 2" porting (P32)

Correcting for Viscosity and **Specific Gravity**


Element pressure drop information in this publication is based on the viscosity (150 SUS or 32 cSt) and specific gravity (0.86) of the most commonly used hydraulic oils.

If the viscosity or specific gravity of the fluid you are designing for is different from these, use the following formulas to obtain the correct ΔP values.

Corrected element
$$\Delta P = \Delta P$$
 from curve $= \frac{SUS \text{ viscosity}}{150} \times \frac{SPecific \text{ gravity}}{0.86}$

Corrected element $\Delta P = \Delta P$ from curve $= \frac{SUS \text{ viscosity}}{150} \times \frac{SPecific \text{ gravity}}{0.86}$

Corrected element $\Delta P = \Delta P$ from curve $= \frac{SUS \text{ viscosity}}{32} \times \frac{SPECIFIC \text{ gravity}}{0.86}$

Schroeder Element Media

Z-Media® Elements (Synthetic)

The special class of micro-glass and other fibers used in Z-Media® are manufactured with utmost precision, to specific thicknesses and densities, and bonded with select resins to create material with extra fine passages. No other filter media can provide the benefits of Schroeder's Excellement® Z-Media®: maximum dirt-holding capacity, superior particle capture, excellent beta stability, minimum pressure drop, high flow rate and low operating cost.

The typical multiple layer construction (shown in Figure 9) has evolved from comprehensive laboratory testing to provide extended element life and system protection. Each successive layer performs a distinct and necessary function. The outermost layer is designed to maintain element integrity. Beyond this layer is a spun bonded scrim, offering coarse filtration and protection for the filtering layers within. Multiple sheets of fine filtering media follow, providing intricate passageways for the entrapment of dirt particles. Together, the various layers of filter media provide the ideal combination for peak filtration performance.

Figure 9. Cutaway of Excellement® Z-Media®

Schroeder's complete line of quality filtration elements—including Schroeder's original element designs, BestFit® replacement elements, CoreCentric® coreless elements and DirtCatcher®—are manufactured with Excellement® Z-Media®.

The better efficiencies, excellent stability, lower pressure drops, and higher dirt holding capacities provided by Excellement® Z-Media® mean cleaner oil, longer element life, and less downtime. They outlast, outperform, and excel in every measurable benchmark.

The Excellement® Z-Media® series of filter elements have been designed, tested, and proven to be the best performing elements available on the market today.

Better flow characteristics:
 Lower pressure drop and improved flow stability

■ Improved efficiency: Cleans oil in less time and improved reliability

- Higher dirt holding capacity:
 Longer element life, lower maintenance costs (labor)and decreased inventory costs (parts)
- Multi-layer construction: Each layer performs a distinct function
- Beta stability: Excellement® Z-Media® maintains efficiency as differential pressure increases

Features and Benefits

Schroeder Z-Media® elements are tested under cyclic flow conditions to verify flow fatigue characteristics. Extra strength and rigidity are engineered into every one of these filter elements through the use of epoxy-coated steel wire mesh and additional support layers. (ZX Series high crush strength capabilities are available for 3000 psi applications.)

A wide range of Schroeder Z-Media® elements enable you to achieve the desired cleanliness level for your system. Developed through comprehensive laboratory testing and field performance studies, these elements have been proven effective. Shown in Table 10 are cleanliness levels that can be achieved using Z-Media® filter elements in various applications.

Table 10. Typical Field Application Results

Application	Cleanliness* Level
Railroad Maintenance-of-Way Equipment	ISO 19/17/14
Power Generation Turbine Skid	ISO 17/15/13
Timber Harvesting Equipment	ISO 17/15/12
Plastic Injection Molding Machine	ISO 17/15/12
Paper Mill Lube System	ISO 16/14/11
Aircraft Test Stand	ISO 15/13/10
Hydraulic Production Test Stand	ISO 13/11/8

^{*}Higher or lower levels can be obtained by selecting coarser or finer Schroeder Z-Media®, respectively.

Excellement® Elements Have Improved Filtration Ratios

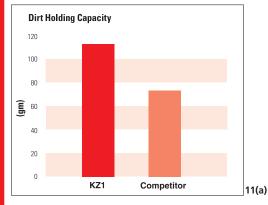
Table 11 shows the ISO 16889 filtration ratios (Betas) for Schroeder Z-Media® elements Z1, Z3, Z5, Z10 and Z25. Figure 10 depicts the information in Table 11 graphically and provides corresponding % efficiencies. The numbers contained in the tables are simply specific data points from the plots for the respective media shown. The filtration ratio (Beta) is shown on the left side and the equivalent particle capture efficiency (%) is shown on the right for particle sizes shown across the bottom. The filtration ratio (in Table 13) indicates the particle size at which the filtration ratio for the element is greater than a given number.

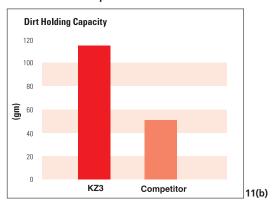
Table 11. Z-Media® Filtration Ratios

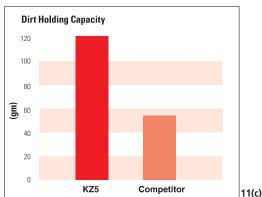
Flamant	Filtration Ratio Per ISO 16889								
Element Media	ßx(c) ≥ 75 (98.7%)	ßx(c) ≥ 100 (99%)	ßx(c) ≥ 200 (99.5%)	ßx(c) ≥ 1000 (99.9%)					
Z1	<4.0	<4.0	<4.0	4.2					
Z3	<4.0	<4.0	<4.0	4.8					
Z5	<4.0	4.2	4.8	6.3					
Z10	6.8	7.1	8.0	10.0					
Z25	16.3	17.1	19.0	24.0					

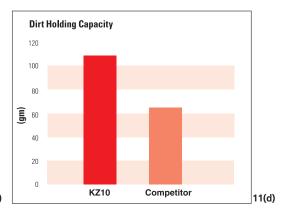
Schroeder offers a line of high crush media elements with a collapse rating of 3000 psid for use in its non-bypass version of filter housings, which include the: NFN30, DFN40, CFN40, RFN60, CFN60, TFN50, KFN30, KFN50, KCN50, MKFN50, KCN65, FOF30, FOF60 and NOF30.

Series ZX High Collapse Elements (Synthetic)




Excellement Elements Have High Dirt Holding Capacities




Dirt holding capacity (DHC), simply stated, is the amount of solid contamination that an element can hold before the filter housing reaches its terminal bypass setting. The higher the dirt holding capacity, the longer the element will last. This translates to fewer element purchases, less frequent equipment shutdowns, decreased maintenance time, and reduced inventory. In short, it means money saved.

Figures 11(a) - 11(e). DHC Comparison for Z-Media® Elements and Competition

Dirt Holding Capacity

120

100

80

(E)

60

40

20

0

KZ25 Competitor

Table 12. Typical Dirt-Holding Capacities for Z-Media® Element (in grams)

Type	Element Size (Diameter x Length)								
Type Medium	2" x 6" 6R	3" x 8" 8T	4" x 9" K	5" x 18" BB	6" x 39" Q				
Z1	15	51	112	268	1485				
Z3	15	52	115	275	1525				
Z5	16	59	119	301	1536				
Z10	14	55	108	272	1432				
Z25	15	56	93	246	1299				

The data shown represents the cumulative results of multi-pass tests in accordance with ISO 16889. Tests are conducted on a regular basis at Schroeder's own laboratory and at approved independent facilities.

A monetary value can be calculated for a filter element by considering its dirt holding capacity and efficiency in combination with its cost. To make this determination, first find out how much you're spending to clean your fluid to a desirable cleanliness level. Then figure out how much contamination (in grams) that the element is actually retaining. These two numbers will make it possible to calculate the grams of dirt per dollar spent. It's one thing to clean the oil, but it's another to clean the oil and simultaneously provide maximum element life. With Excellement® Z-Media®, you don't need to sacrifice element life to achieve high efficiency.

We are confident that the high efficiencies, exceptional dirt holding capacities, and low pressure drops combined with Schroeder's competitive prices— make elements made with Excellement® Z-Media® the best value in the market today.

Figure 12. Grams of Dirt Retained per Dollar Spent

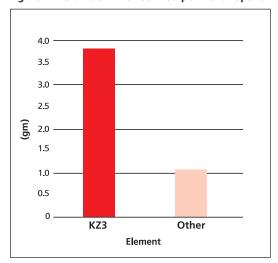


Figure 10. Z-Media® Excellement® Efficiency

Element Case Weights

In proportion to the high volume of filter elements we make and ship, one of the most frequently asked questions our order desk receives involves the weights of various cases of elements. In an effort to include this information in this edition of the catalog, we made the assumption that the various micron ratings within a media type weigh the same; i.e., a KZ1 weighs approximately the same as a KZ25.

The following table represents our findings given the above assumption.

		Case Lot	Weight (lb.)			Case Lot	Weight (lb.)			Case Lot	Weight (lb.)
А	paper	12	7	K	paper	12	17	8Z	paper	12	12
AZ	synthetic (Z)	12	8	KZ	synthetic (Z)	12	22	8ZZ	synthetic (Z)	12	13
ВВ	paper	6	29	KW	Water Removal	12	18	9V	synthetic (Z)	12	14
BBZ	synthetic (Z)	6	29	KK	paper	6	18	14V	synthetic (Z)	6	10
C	paper	12	7	KKZ	synthetic (Z)	6	20	14C	synthetic (Z)	6	11
CZ	synthetic (Z)	12	8	27K	paper	6	20	18L	synthetic (Z)	6	20
CC	paper	12	11	М	paper	12	33	39Q	paper	1	17
CCZ	synthetic (Z)	12	15	N	paper	12	4	39QPML	synthetic (Z)	1	18
FZX3	synthetic (Z)	12	3	NZ	synthetic (Z)	12	7	39QCL	synthetic (Z)	1	11
FZX10	synthetic (Z)	12	3	NN	paper	12	6	16Q	paper	1	8
6G	synthetic (Z)	12	8	NNZ	synthetic (Z)	12	9	16QPML	synthetic (Z)	1	15
9G	synthetic (Z)	12	13	6R	synthetic (Z)	12	10	16QCL	synthetic (Z)	1	3

Cost Per Gram Analysis/ **Excellement® Efficiency**

Far too often, customers make purchasing decisions based solely on price, only to be extremely disappointed with the poor quality delivered by low cost imitations. To make the matter worse, the customer often points an accusing finger at the filter housing manufacturer for poor performance, rather than the inadequate element they used as a replacement for the original Schroeder element.

GeoSeal® is a patented offering from Schroeder that provides a unique way for OEM's to retain replacement element business and to keep a filter's performance at the level that it was supplied. The idea is brilliantly simple: the critical sealing arrangement between a filter housing and its replacement element takes on a shape other than the standard circular arrangement. Specifically, the element grommet & mating bushing are given a new geometric shape. Figures 1 & 2 show the initial configuration being used.

Figure 1. Filter element with GeoSeal grommet.

Figure 2. Filter housing (cut-away) with GeoSeal bushing.

Availability

Currently, the GeoSeal® design is available on the K-size element and in the following Schroeder filter series: KF30, KF50, KC50, KC65, MKF50, K9, 2K9, 3K9, KF3, KL3, MLF1, KF5, RT, ZT, and LRT.

How To Order

To order the filter housing and element incorporated with the GeoSeal® design:

- "G" is added to the front of the housing model code (KF30, KF50, KC50, KC65, MKF50, KF3, KL3, MLF1, KF5, K9, 2K9, 3K9, RT, ZT, and LRT).
- "BG" is added to the element model code for RT (one end of the element has the GeoSeal®; the other end has an integrated bypass valve)

GeoSeal Filters Selection Guide

		Pressure psi (bar)	Flow gpm (L/min)	Element Length/Size	Page
	High Pressure GeoSeal® Filters				
	GKF30 GeoSeal®	3000 (210)	100/150 (380/570)	KG, KKG, 27KG	97
	GKF50 GeoSeal®	5000 (345)	100/150 (380/570)	KG, KKG, 27KG	97
	GKC50 GeoSeal®	5000 (345)	100/150 (380/570)	KG, KKG, 27KG	105
	GMKF50 GeoSeal®	5000 (345)	200 (760)	KG, KKG, 27KG	109
	GKC65 GeoSeal®	6500 (450)	100 (380)	KG, KKG, 27KG	113
ی	Medium Pressure GeoSeal® Filters				
Filters	GKF5 GeoSeal®	500 (35)	100 (380)	KG	161
aa .	GK9 GeoSeal®	900 (60)	100 (380)	KG, KKG, 27KG	169
GeoSeal®	G2K9 GeoSeal®	900 (60)	100 (380)	KG, KKG, 27KG	173
G	G3K9 GeoSeal®	900 (60)	100 (380)	KG, KKG, 27KG	173
	Low Pressure GeoSeal® Filters				
	GKF3 GeoSeal®	300 (20)	100 (380)	KG, KKG, 27KG	219
	GKL3 GeoSeal®	300 (20)	120 (455)	KG, KKG, 27KG, 18LG	223
	GMLF1 GeoSeal®	300 (20)	200 (760)	KG	231
	GZT GeoSeal®	100 (7)	40 (150)	8GTZ	251
	GRT GeoSeal®	100 (7)	100 (380)	KBG, KKBG, 27KBG	259
	GLRT GeoSeal®	100 (7)	150 (570)	18LG	267

Private Labeled Elements

Schroeder offers a full line of branding solutions for air breathers, spin-ons, and replacement elements. Using the Element Private Label Form (L-2993), OEMs can obtain Schroeder elements with their very own custom logo (for Spin-on elements and air breathers, reference L-2994 on our website). Furnishing elements with custom branding enables OEMs to capture their aftermarket element business. Custom labeled products also protect against the use of unauthorized elements, thus reducing the potential of field warranty issues. Additionally, private branded products are proprietary and will not be shared with others without written consent from the OEM.

Steps for Establishing an Outer Wrap/End Cap Markings

- 1. Elements can be private labeled by marking the end caps, adding a private labeled plastic outerwrap,
- 2. Customer name and part number will be etched on to one of the end caps with Schroeder date codes unless otherwise specified.
 - a. Logos can be laser etched onto the end cap if space allows on the desired element (a .DXF file of the logo is required).
- 3. When requesting a plastic outer wrap, the customer must supply all artwork in a vector file format (.Al or .EPS).

- 4. Once the artwork is received, a RIP file (used to print the wrap) will be created and a sample swatch will be provided for customer approval (average lead time is approximately 2 weeks).
- 5. The sample printed polyester swatch will be sent to the customer for approval. The sample swatch can be temporarily wrapped around a SBF-9600-8 element, but this must be requested.
- 6. Once the customer has approved the sample, element part numbers (specific to element size) can be established and structured. Cost, delivery and required minimum quantity may depend on element size and private labeling style.

Packaging Capabilities

Schroeder has the ability to brand both individual and master cartons as requested. We can apply the customer name, part number, logo (black and white - .jpg file), and other customer texts. Bar coding and customer pre-printed boxes can also be requested (set up fees and minimum order quantities are required for customer pre-printed boxes).

Extra Aftermarket Retention Advantages:

Incorporating a private labeling program has shown that upwards of 60% of aftermarket element business is retained. Instituting of a private branding program also protects against the use of inferior and/or unqualified replacement element substitutions.

Anti-Static Pleat Elements

During the production of hydraulic oils, "additive packages" are introduced into the base oils to give the fluids certain characteristics they need for the demanding conditions of today's systems. The additives improve viscosity, reduce friction, prevent wear, and allow the fluid to tolerate high temperatures without oxidation. Some oils are produced with toxic aromatics and heavy metals, with a high electrical conductivity, but because of their toxicity and potential threat to the environment, they no longer comply with current, international environmental standards. Other groups of oils are produced with the appropriate, approved additive packages, often labeled as highly refined or synthetic. They contain no toxins or carcinogens, and are free of heavy metals, but due to their metal-free nature, they have a lower electrical conductivity rating. Low electrical conductivity means that any charges that are generated through the oil flow may not be dissipated quick enough, thus causing sparking. Ultimately, this can cause explosions in the reservoir or damages in vital hydraulic components, such as valves and filters.

The sparks can also interfere with or damage expensive electronic components, and form oil-ageing deposits, such as varnish. Varnish then settles on the oily surfaces of the vital components and has a detrimental effect on how well your machine functions. Potential consequences of varnish also includes seized valve spools, overheated solenoids, and extremely short filter element service life.

The Anti-Static Pleat Media (ASP®) element was developed to greatly reduce or eliminate electrostatic discharging problems that can occur during filtration of hydraulic and lube fluids. By combining proven Excellement® media and ASP® technology, it is now possible to offer both high filtration efficiency and electrical conductivity.

Other key areas that can contribute to Electrostatic Discharge:

- Filter Media media layer construction can influence high voltage charge
- Hydraulic Fluids group II and III have low conductivity
- Temperature higher voltage charge will generally exist with lower temperature

DirtCatcher® Elements

DirtCatcher® elements from Schroeder offer a superior alternative to inside-out filtration. The patented outer shell prevents contaminants from falling back into the system during element changes while still providing the excellent dirt retention of Excellement® media. DirtCatcher® elements are currently available in single and double length K, BB, and 18L size elements, and feature Excellement® media within.

Currently, DirtCatcher® elements can be purchased separately or as part of our RT, KF3, KF8, BFT, and LRT filter assemblies.

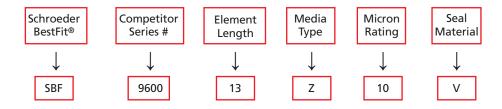
The DirtCatcher® solution provides peace of mind to those concerned with dirt escaping from elements during the removal process while delivering all the advantages of Schroeder original (outside-in flow) elements:

- Better Pressure Drop
- Greater Surface Area
- Better Pleat Stability

This design is only available from Schroeder. It goes without saying that DirtCatcher's unique design also allows OEM's to retain 100% of after-market business.

Schroeder Industries manufactures over 2000 BestFit® performance replacement elements. In addition, Schroeder Industries produces all of the technical data to support the sale of these products. The BestFit® family consists of standard cartridge and spin-on replacements, CoreCentric® coreless elements, high collapse elements, and the melt-blown and spun-bonded process filtration elements. Most importantly, we offer the easiest way to determine the Schroeder equivalent of more than 42,000 competitive elements using the Schroeder online element search, accessible through our web site at www.schroederindustries.info.

Simply clicking on "BestFit® Element Cross Reference" on the Schroeder Industries home page (www.schroederindustries.com) allows you to match filter elements by entering either the manufacturer's name or part number.


There are two ways to search on the Schroeder BestFit® cross reference page. The first way is to type a competitor element part number in the search bar. When searching by competitor part number, the search will activate as soon as three characters are entered (no spaces or symbols). The second way is to use the two drop down menus to find the competitor and part number you are trying to cross. When a cross has been located, the results table includes the corresponding BestFit® replacement element, dimensions (inside diameter, outside diameter and length), element style (e.g., cartridge or spin-on), media type (metal mesh, water removal, synthetic glass, or paper) and performance specifications, including beta ratios and dirt holding capacity. Also, a link to the left of the results table links to a generalized element drawing with all of the desired information on it. If there is an element that cannot be crossed, Schroeder Industries can work with you in finding a replacement solution to your element problem!

Schroeder BestFit® Elements include the following series:

QCLZ (8314 replacement)	SBF-0160R	SBF-0660R	SBF-170B	SBF-7500	SBF-9021	SBF-MF-100
QPML (8310 replacement)	SBF-0161D	SBF-0661D	SBF-2000	SBF-7507	SBF-9100	SBF-PXX
SBF-0030D	SBF-0240D	SBF-0850R	SBF-2544	SBF-8200	SBF-9400	SBF-PXW
SBF-0030R	SBF-0240R	SBF-0950R	SBF-2600R	SBF-8300	SBF-9600	SBF-RP83
SBF-0031D	SBF-0241D	SBF-1000	SBF-270	SBF-8400	SBF-9601	SBF-TXX
SBF-0060D	SBF-0280D	SBF-1001	SBF-270B	SBF-8500	SBF-9604	SBF-TXW
SBF-0060R	SBF-0281D	SBF-1002	SBF-370	SBF-8700	SBF-9650	SBF-UE210
SBF-0661D	SBF-0330D	SBF-1010	SBF-370B	SBF-8800	SBF-9651	SBF-UE219
SBF-0110D	SBF-0330R	SBF-1050	SBF-6000	SBF-8900	SBF-9800	SBF-UE310
SBF-0110R	SBF-0331D	SBF-1051	SBF-6400	SBF-8914	SBF-9801	SBF-UE319
SBF-0111D	SBF-0500R	SBF-1300R	SBF-6500	SBF-937	SBF-9901	SBF-UE610
SBF-0160D	SBF-0660D	SBF-170	SBF-7400	SBF-9020	SBF-BPE-7509	SBF-UE619

Schroeder BestFit® element model codes are determined by replicating the element model code it is replacing. An example of a breakdown of the model code is shown below:

Schroeder BestFit® Model Code: SBF-9600-13Z10V

BestFit® High Performance Replacement **Elements**

CoreCentric® Coreless Element

CoreCentric®

CORELESS ELEMENT WITH BACKBONE

The CoreCentric® Coreless element is an environmentally friendly, all plastic element (no metal parts) that can be crushed, shredded or burned. These alternative methods of disposal will not only greatly reduce solid waste volumes, but also reduce disposal costs simultaneously.

CoreCentric® Coreless elements are designed to ensure optimum performance and ease of service. Built with Excellement® Z-Media®, CoreCentric® Coreless elements (QCL) fit in all Pall 8304 and 8314 housings and are available in the 8", 13", 16", and 39" lengths. Note: To ensure fast delivery, CoreCentric® elements are available with Viton® seals only.

CoreCentric® elements are designed with an integral patent design, cylindrical center core that provides column strength, added structural stability, and easy element removal. This core eliminates both the sticking and vertical sagging problems that can occur when using other manufacturer's coreless designs.

Schroeder's CoreCentric® elements are the only coreless element designed with backbone. We call it the "CORE ON CORE" element design.

Melt-Blown and Spun-Bonded Filter Elements For Process and Cutting Fluid Applications

Used in process and cutting fluid applications, melt-blown and spun-bonded elements are manufactured with either polypropylene or nylon filter media. Element fibers are blown onto and thermally bonded to a central support core with increasing fiber density towards the core, creating depth filtration. All layers are interlinked to offer maximum support while ensuring high void volume. The thermal bonding process minimizes media migration, providing consistent and reliable performance. They excel in dirt holding capacity and have low pressure drops. They also offer wide chemical compatibility, as well as being structurally sound and able to withstand high flow rates.

Melt-blown and spun-bonded elements fit most industrial housings incorporating the double open ended sealing arrangement, as well as standard polypropylene, PVC, and polycarbonate housings. In addition, these elements are available with end caps for most plug-in style O-ring fittings, making them ideally suited to more critical applications requiring the assurance of these double seals.

They have a wide range of applications including:

- Machine tool coolants
- Roll mill coolants
- EDM fluids
- Quench oils

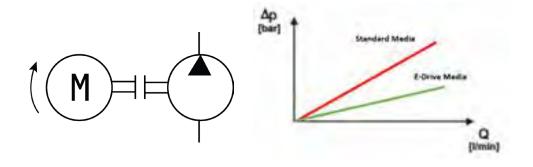
- Parts washing solvents
- Electrophoretic paints
- Etching solutions
- Plating solutions
- Light oils
- Fuels
- High water containing fluids

For technical information on process filtration solutions, request catalog #L-2728.

The use of Schroeder's GREEN, Electric Drive (E-Drive) Media filtration technology guarantees safe and reliable equipment operation, all-while conserving the use of energy.

Part of Schroeder's Energy Saver initiative, filter elements made using the all-new E-Drive Media are characterized by an unusually low pressure drop, making them suitable for low energy requirements compared to conventional hydraulic elements under the same ambient conditions.

E-Drive Media is the clear choice for use in electric hydraulic drive motor-pump units. Use it for conserving energy bills and wherever high viscosity fluids are employed – especially at low temperatures that produce a cold start behavior.


Schroeder's E-Drive Energy Saving Features:

- Low resistance of flow to reduce the ΔP across the element.
- Constructed of multi-layered, synthetic fiber material with support.
- Great for cold start conditions where a low pressure drop is required.

Technical Specs:

- Element Collapse Rating: 145 psid (10 bar).
- Temperature Range: -22°F to 212°F (-30°C to 100°C).
- Flow Direction: Outside to Inside.

E-Drive Media is currently rated for 8, 10, & 15 µm filtration..

Electric Drive Elements

E-Drive Media is part of:

E Media Elements (Cellulose)

Recognized as one of the industry's most cost effective media available in the marketplace, Schroeder E media is an excellent choice for a wide variety of hydraulic system applications.

The E3 media is a specially designed mixture of cellulose and micro-glass, which provides both high dirt holding capacity and high particle capture efficiency, resulting in one of the industry's most cost effective cellulose media. Schroeder E10 media, used in the popular K10 element, is a standard for numerous industries, enabling continuous, trouble-free system operation.

Please note: The "E" identification for the media is not shown in the element model number. For example, our standard K3 and K10 elements are constructed with E media.

Table 14 shows the filtration ratios for Schroeder E media elements, while Figure 18 depicts this information graphically and provides corresponding % efficiencies for both the E3 and E10 media.

Table 14. E Media Efficiency Ratings per ISO 4572 without Antistatic Additive

		Filtration Ratios (Beta)							
Element Media	β _X ≥ 75 (98.7%)	β _χ ≥ 100 (99%)	β _X ≥ 200 (99.5%)	ß ₃	ß ₅	^В 10	^В 20		
E3	6.8	7.5	10.0	28	48	200	>1000		
E10	15.5	16.2	18.0	_	1.3	10	400		

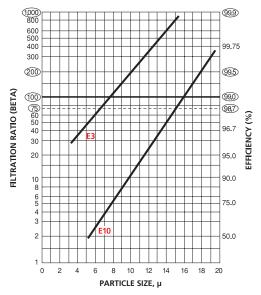

The cost effectiveness of E media becomes even more apparent when dirt holding capacity is considered (see Table 15). The dollars spent per gram of dirt retained with an E media element makes it an excellent choice for many contamination control programs.

Table 15. Typical Dirt Holding Capacities for E Media Elements (ACFTD capacity in grams)

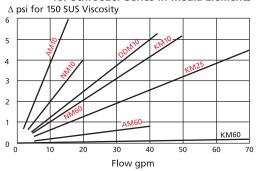
(Act 12 capacity in grains)					
Element	Me	dia			
Size	E3	E10			
N	8	7			
NN	12	10			
C	14	12			
CC	30	25			
А	16	13			
K	54	44			
9C	30	25			
ВВ	162	132			
18L	108	88			
М	50	37			
8Z	39	32			
8T	39	32			
Р	_	37			
9V	32	26			
14V	51	41			
6R	9	8			

The data shown represents the cumulative results of E media multi-pass tests. Tests are conducted on a regular basis at Schroeder's own laboratory and at approved independent facilities. Tests are conducted without antistatic additive.

Figure 16. E Media Element Efficiencies Per ISO 4572

The data shown represents the cumulative results of E media multi-pass tests. Tests are conducted on a regular basis at Schroeder's own laboratory and at approved independent facilities. Tests are conducted without antistatic additive.

Schroeder offers a line of metal reusable elements to meet specific application needs. These rugged elements are constructed of high-strength woven stainless steel wire mesh. The wire mesh and center tube are epoxy-bonded to the end caps.


The element design incorporates shallow pleats which provide an efficient flow pattern with optimum pressure drop. In addition, the shallow pleat construction simplifies the cleaning process. These elements may be cleaned using a liquid solution (either Kleenite or Oakite) or by ultrasonics. Request Schroeder's #L-2094 Data Sheet for details regarding recommended cleaning procedures.

Schroeder metal elements are available in a variety of sizes for 10, 25, 60, 150, and 260 µ filtration and are shown in Table 16. The size and type of wire mesh used for each micron rating are shown in Table 17.

Table 17. Micron Ratings and Wire Mesh

10 μ	200 x 1400 twilled Dutch weave
25 μ	165 x 1400 twilled Dutch weave
60 μ	50 x 250 plain Dutch weave
150 μ	100 x 100 square Dutch weave
260 μ	60 x 60 square Dutch weave

Figure 17. Typical Pressure Drop Performance Data for Schroeder Series M Media Elements

M Media Elements (Reusable Metal)

Today's demand for the use of fire-resistant fluids that assure safe and dependable operation in an electrohydraulic control system (EHC) demand peak performing media. The change-over to Schroeder "F" Pack media from a traditional, high performance, synthetic media results in lower, clean pressure drop and higher efficiency. Most importantly, the change eliminates cast-off, or shedding of synthetic fibers, which can result in servo valve failure.

Construction

- Total stainless steel, sintered depth style media
- Pleated media
- Sintered construction prevents shedding of media
- Outside/in flow

Performance

- Extremely efficient: ß3=1000 and ß10=1000
- Excellent choice for use with phosphate esters and Fyrguel® fluids
- Operating temperature -20°F to 350°F with use of Viton® seals
- Element collapse rating 3000 psid for use at high differential pressures

F-Pack Media

W Media **Elements** (Water Removal)

Water can cause a host of contamination problems in hydraulic and lubrication systems. It can exist in a system in a dissolved state or in a free state. In a dissolved state, the fluid is holding the water. In a free state, the water is above the specific saturation point of the fluid, and thus cannot dissolve or hold more water. A mild discoloration of the fluid generally indicates that a free water condition exists in the system.

Schroeder's uniquely designed water removal elements employ a quick-acting water-absorbent polymer, capable of holding over 400 times its own weight in water. These elements are ideal for in-line use, re-circulating filter systems, or in portable filtration carts.

Water retention is positive, even under high pressure, so there is no downstream unloading. However, water retention capacity is dependent on the type of fluid and additives present in a system, its viscosity and its flow rate. As a result, retention capacity may be diminished by some additives present in the system, by a high viscosity, or a high flow rate.

Table 18 shows water holding capacity and Table 19 shows the pressure drops for select W media elements. (On net page)

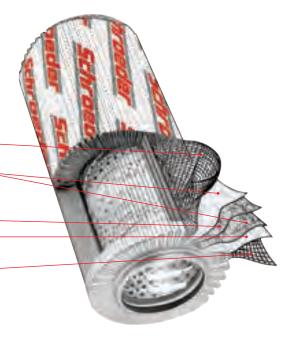
For best results, flow rates through a single KW element should be 10 gpm (38 L/min) or less.

Aqua-Excellement™ **High Efficiency Particulate Water Removal Media**

Schroeder offers Aqua-Excellement™ filter elements, which excel at removing both water and solid particulates from petroleum-based fluids. The filtering media incorporated into Aqua-Excellement™ elements is referred to as ZW and includes layers of Schroeder's high efficiency Excellement® Z-Media® for capturing particulate contaminations in combination with water removal capabilities. The high efficiencies, outstanding beta stabilities, and excellent dirt holding capacities that Excellement® customers have become accustomed to are present in the new ZW media. Paired together, these two types of media make a winning combination and are highly effective at filtering out water and solids simultaneously.

Aqua-Excellement™ elements are currently available in multiple sizes for both cartridge and spin on style. Equipped, with ZW media, Schroeder MFS/AMS series carts can be effectively utilized for on-site flushing applications for cleaning stagnant large volume reservoirs. When used on a kidney loop system installed on power units, the ZW media allows for smaller kidney loop system and lower dimensional clearance and weight. Other applications include mobile filtration systems and bulk transfer systems.

Schroeder Kidney Loop Systems and Mobile **Filtration Carts** can utilize the KZW cartridge elements


ZW Spin-On Elements

NOTE: When using any K-size housing do not exceed 14 gpm

- Epoxy-coated steel wire fabric provides maximum support and rigidity.
- Two layers of Z-Media provide maximum efficiency and dirt-holding capacity with minimal pressure drop
- Water removal media
- Spun-bonded scrim provides downstream media support and increased stability
- Epoxy-coated steel wire fabric provides maximum support and rigidity.

Total water injection flow rate: 2.0 ml/min.

Table	18.	Water	Holding	Capacity

Tubic for th	rater fiolding c	арастсу	
Element	Flow	Capa	acity
Model No.	gpm (L/min)	mL	ounces
KW	20 (75)	150	5
KW	16 (60)	200	7
KW	10 (38)	320	11
KW	2 (7.5)	500	17
6RW	20 (75)	31	1
6RW	2 (7.5)	104	4
WT8	20 (75)	93	3
8TW	2 (7.5)	311	11
9VW	20 (75)	81	3
9VW	2 (7.5)	270	9
14VW	20 (75)	130	4.4
14VW	2 (7.5)	435	14.7
16QW	60 (225)	480	16
16QW	10 (38)	1350	45
39QW	140 (530)	1100	37
39QW	22 (83)	3100	105
MW	14 (53)	100	3.5
MW	1.5 (6)	350	12

Table 19. Pressure Drop

	•		
Element Model No.	Flow gpm (L/min)	ΔP psi (bar)	
KW	20 (75)	2.5 (0.17)	
14VW	20 (75)	2.5 (0.17)	
16QW	65 (246)	2.5 (0.17)	
39QW	150 (570)	2.5 (0.17)	

Table 20. Maximum Recommended Flow Rate

Element	Maximum Recommended Flow Rate			
Model No.	gpm	L/min		
KW	20	75.7		
6RW	4	16		
8TW	12	47		
9VW	11	41		
14VW	20	75		
16QW	60	225		
39QW	140	530		
MW	16	6		

Table 21. KZW Cartridge Element Dirt and Water Holding Capacities

Element	DHC	Water Removal Capacity		Filtration Ratios (Beta)							
Part Number	(g)	2.5 gpm	10 gpm	ßx ≥ 200	ßx ≥ 1000	ΔP Factor					
KZW1	61	197 mL/ 6.66 oz		<4.0	<4.0	0.43					
KZW3/KKZW3	64/128					4.0	4.8	0.32			
KZW5/KKZW5	63/126										5.1
KZW10/KKZW10	57/114		1.33 02	6.9	8.6	0.23					
KZW25/KKZW25	79/158			15.4	18.5	0.14					

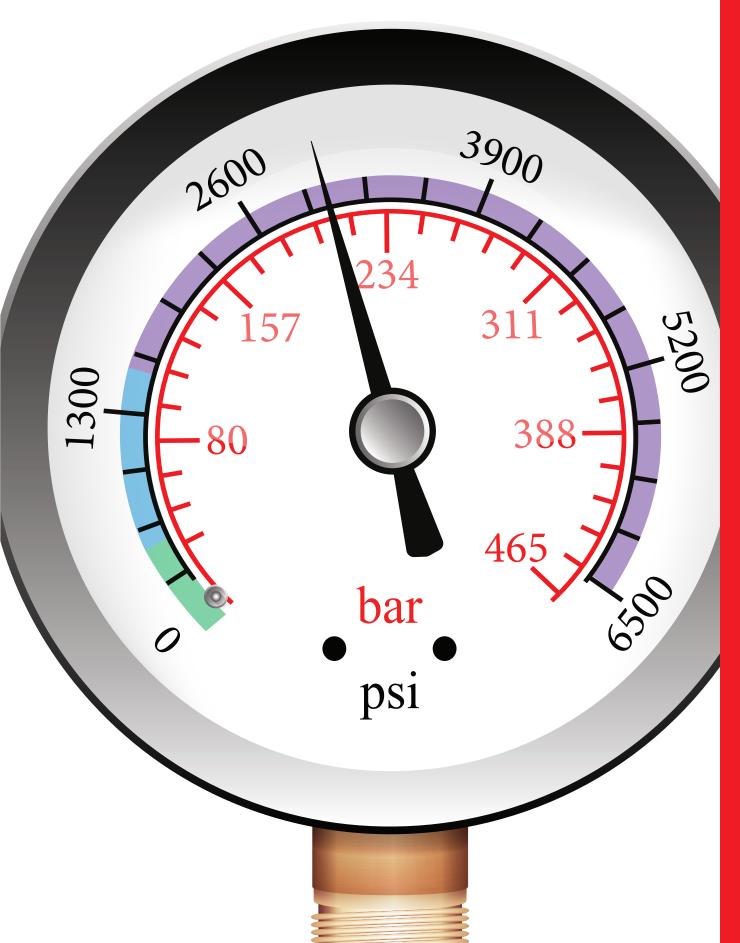


Table 22. ZW Spin-On Element Dirt and Water Holding Capacities

Element		DHC	Water Remo	oval Capacity	Filtration Ratios (Beta)		
	Part Number	(g)	2.5 gpm	10 gpm	ßx ≥ 200	ßx ≥ 1000	
	10MZW10	53	185 mL/ 6.3 oz	126 mL/ 4.3 oz	6.9	8.6	

Aqua-Excellement™ High Efficiency Particulate Water **Removal Media**

Notes Section:

Section 3 High Pressure Filters Selection Guide

		Pressure psi (bar)	Flow gpm (L/min)	Element Length/Size	Page
	Top-Ported High Pressure Filters		3, ,		J
	NF30	3000 (210)	20 (75)	N, NN	45
	NFS30	3000 (210)	20 (75)	N, NN	49
	YF30	3000 (210)	25 (100)	4Y, 8Y	53
	CFX30	3000 (210)	30 (115)	CC, DD	57
	PLD	3000 (210)	100 (380)	DV	61
	CF40	4000 (275)	45 (170)	C, CC	65
	DF40	4000 (275)	30 (113)	C, CC	65
	PF40	4000 (275)	50 (190)	5H, 9H	69
	RFS50	5000 (345)	30 (115)	8R	73
	RF60	6000 (415)	30 (115)	8R	77
	CF60	6000 (415)	50 (190)	СС	81
	CTF60	6000 (415)	75 (284)	5CT, 8CT, 14CT	85
	VF60	6000 (415)	70 (265)	9V	89
	LW60	6000 (415)	300 (1135)	39ZP	93
	Base-Ported High Pressure Filters				
psi)	KF30	3000 (210)	100/150 (380/570)	K, KK, 27K	97
6500	KF50	5000 (345)	100/150 (380/570)	K, KK, 27K	97
- 1	TF50	5000 (345)	40 (150)	A, CC	101
Filters (1500	KC50	5000 (345)	100/150 (380/570)	K, KK, 27K	105
.s (1	MKF50	5000 (345)	200 (760)	K, KK, 27K	109
ilter	MKC50	5000 (345)	200 (760)	K, KK, 27K	109
	KC65	6500 (450)	100 (380)	K, KK, 27K	113
Pressure	MKC65	6000 (413)	300 (1136)	K, KK, 27K	117
	Hydrostatic (Bidirectional) Flow High	Pressure Filters			
High	HS60	6000 (415)	100 (380)	13HZ	121
Ξ	MHS60	6000 (415)	100 (380)	13HZ	121
	KFH50 (Base-Ported)	5000 (345)	70 (265)	K, KK, 27K	125
	In-Line Filters				
	LC60	6000 (415)	8 (30)	SSD	129
	LC35	3500 (241)	15 (57)	BS	131
	LC50	5000 (345)	9 (35)	5H	133
	Servo Protection (Sandwich) Filters D	O7, DO3, Moog, Par	ker & Vickers		
	NOF30-05	3000 (210)	12 (45)	NN	135
	NOF50-760	5000 (345)	15 (57)	SV	139
	FOF60-03	6000 (415)	12 (45)	F	143
	Manifold Mount Filter Kits (Bowls & I	nstallation Drawing			
	NMF30	3000 (210)	20 (75)	NN	147
	RMF60	6000 (415)	30 (115)	8R	149
	Cartridge Elements for use in Manifo	d Applications			
	14-CRZX10	3000 (210)	6 (23)	_	151
	20-CRZX10	3000 (210)	12 (45)	_	152

Top-Ported Pressure Filter

Features and Benefits

- Top-ported pressure filter
- All aluminum assembly
- Available with non-bypass option with high collapse element
- Offered in pipe, SAE straight thread and ISO 228 porting
- Same day shipment model available

20 gpm *75 L/min* 3000 psi 210 bar

NF30

KF30

KF50

KC50

KC65

KFH50

Fluid Compatibility

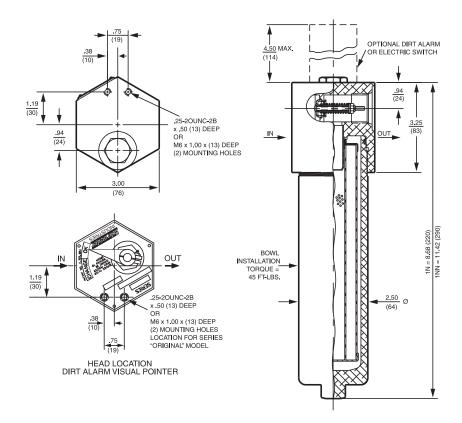
Filter

Housing **Specifications**

Flow Rating:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	3000 psi (210 bar)
Min. Yield Pressure:	10,000 psi (690 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	2400 psi (165 bar), per NFPA T2.6.1
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 85 psi (5.9 bar) Non-bypassing model has a blocked bypass.
Porting Head: Element Case:	
Weight of NF30-1N: Weight of NF30-1NN:	

ype i	luid	Appro	opriate	Schroeder	Media

Element Change Clearance: 4.50" (115 mm)


Petroleum Based Fluids All E Media (cellulose), Z-Media® and ASP® Media (synthetic)

High Water Content All Z-Media® and ASP® media (synthetic) Invert Emulsions 10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)

Water Glycols 3, 5, 10 and 25 μ Z-Media® and 3, 5 and 10 μ ASP® Media (synthetic)

NF30

Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	ß _X ≥ 75	$B_X \ge 100$	$B_X \ge 200$	$\beta_{\chi}(c) \ge 200$	$\beta_{\chi}(c) \ge 1000$
NZ1/NNZ1	<1.0	<1.0	<1.0	<4.0	4.2
NZ3/NNZ3	<1.0	<1.0	<2.0	<4.0	4.8
NZ5/NNZ5	2.5	3.0	4.0	4.8	6.3
NZ10/NNZ10	7.4	8.2	10.0	8.0	10.0
NZ25/NNZ25	18.0	20.0	22.5	19.0	24.0
NNZX3	<1.0	<1.0	<2.0	4.7	5.8
NNZX10	7.4	8.2	10.0	8.0	9.8

Dirt Holding Capacity

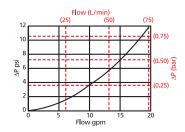
Element	DHC (gm)	Element	DHC (gm)
NZ1	12	NNZ3	16
NZ3	12	NNZ5	18
NZ5	12	NNZ10	15
NZ10	11	NNZ25	15
NZ25	11	NNZX3	11*
NNZ1	15	NNZX10	13*

* Based on 100 psi terminal pressure

Element Collapse Rating: 150 psid (10 bar) for standard elements

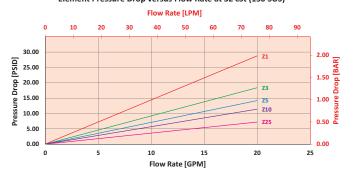
3000 psid (210 bar) for high collapse (ZX) versions

Flow Direction: Outside In

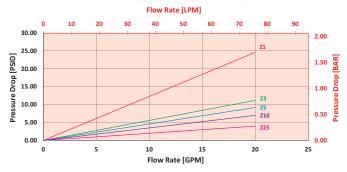

Element Nominal Dimensions: N: 1.75" (45 mm) O.D. x 5.25" (135 mm) long

NN: 1.75" (45 mm) O.D. x 8.0" (200 mm) long

Top-Ported Pressure Filter NF3


 $\triangle \textbf{P}_{\text{housing}}$

NF30 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle P_{element}$

1NZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

1NNZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for NF301NZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{housing}$ at 15 gpm. In this case, $\Delta P_{housing}$ is 7 psi (.48 bar) according to the graph for an NF30 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 15 gpm. In this, case, $\Delta P_{element}$ is 8 psi (.55 bar) according to the graph for an NZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta P_{element}^* \vee_f)$. The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution: $\Delta P_{\text{housing}} = 7 \text{ psi } [0.48 \text{ bar}] \mid \Delta P_{\text{element}} = 8 \text{ psi } [0.55 \text{ bar}]$

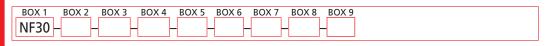
 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 7 \text{ psi} + (8 \text{ psi} * 1.1) = 15.8 \text{ psi}$$

 $\Delta P_{\text{filter}} = .48 \text{ bar} + (.55 \text{ bar} * 1.1) = 1.1 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation:


 $\Delta \mathbf{P}_{\text{element}} = \bar{\text{Flow}} \text{ Rate x } \Delta \mathbf{P}_f$ Plug this variable into the overall pressure drop equation.

Ele.	∆P
N3	1.10
N10	0.17
N25	0.10
NAS3	0.92
NAS5	0.71
NAS10	0.57

NF30 Top-Ported Pressure Filter

Filter Model Number Selection

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	
NF30 -	- 1N -	- Z -	- 10 -		- S -		D5 -		= NF301NZ10SD5

BOX 1 **Filter** Series

NF30

elements)

Number & Size of Elements

N = Single Length

BOX 2

NN = Double Length

NFN30 (Non-bypassing: requires ZX high collapse

BOX 3

Media Type

Omit = E Media (Cellulose)

Z = Excellement® Z-Media® (synthetic)

AS = Anti-Stat Media (synthetic)

ZX = Excellement® Z-Media® (high collapse center tube)

M = Media (reusable metal mesh) N size only

BOX 4

Micron Rating

1 = 1 Micron (Z, ZX media)

3 = 3 Micron (AS,E, Z, ZX media)

5 = 5 Micron (AS, Z, ZX media) 10 = 10 Micron (AS,E,M, Z, ZX media)

25 = 25 Micron (E, Z, ZX media)

60 = 60 Micron (M media)

BOX 5 Seal

Material Omit = Buna N

V = Viton® W = Buna N,

> Anodized Aluminum parts

BOX 6

Porting $B = ISO228 G^{-3/4}$ "

P = 3/4" NPTF

S = SAE-12

BOX 7

Options

Omit = None

X = Blockedbypass (N/A

with NFN30)

BOX 9

BOX 8

Dirt Alarm® Options

Omit = None D = Pointer D5 = Visual pop-up

Visual with

Electrical

Lockout

Electrical

Visual

D8 = Visual w/ thermal lockout Thermal Lockout

> MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5

MS10 = Electrical w/ DIN connector (male end only)

MS10LC = Low current MS10

MS11 = Electrical w/ 12 ft. 4-conductor wire

MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)

MS12LC = Low current MS12

MS16 = Electrical w/ weather-packed sealed connector

MS16LC = Low current MS16

MS17LC = Electrical w/ 4 pin Brad Harrison male connector

MS5T = MS5 (see above) w/ thermal lockout

MS5LCT = Low current MS5T

MS10T = MS10 (see above) w/ thermal lockout Electrical

MS10LCT = Low current MS10T with

MS12T = MS12 (see above) w/ thermal lockout Thermal MS12LCT = Low current MS12T

MS16T = MS16 (see above) w/ thermal lockout

MS16LCT = Low current MS16T

MS17LCT = Low current MS17TMS13DC = Supplied w/ threaded connector & light

Visual MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end)

MS13DCT = MS13 (see above), direct current, w/ thermal lockout **Flectrical** Visual with MS13DCLCT = Low current MS13DCT

Thermal MS14DCT = MS14 (see above), direct current, w/ thermal lockout

Lockout MS14DCLCT = Low current MS14DCT

Additional Options

Omit = None $G792 = \frac{7}{16}$ "-20 UNF drain on housing

Box 2. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5.

Box 5. E media (cellulose) elements are only available with Buna N seals. For options V and W, all aluminum parts are anodized. Viton® is a registered trademark of DuPont Dow Elastomers.

Manifold Mounted Pressure Filter NFS30

Features and Benefits

- Manifold mounted pressure filter
- Offered in square head conventional subplate porting
- Direct mounting to inlet port on customer's manifold

20 gpm *75 L/min* 3000 psi 210 bar

NFS30

KF30 KF50

KC50

MKC50

KC65

KFH50

Fluid Compatibility

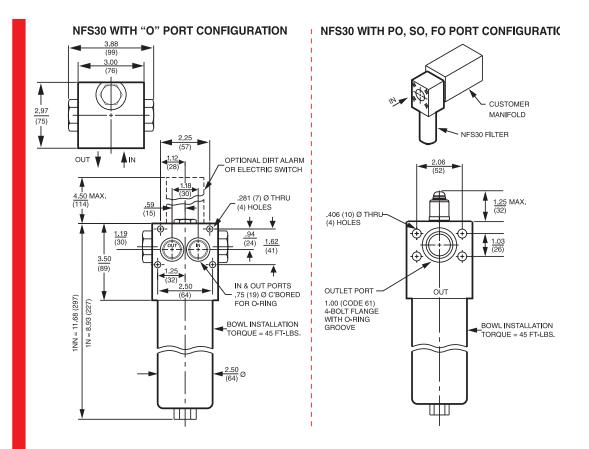
Filter

Housing **Specifications**

20-CRZX10

Model No. of filter in photograph is NFS301NZ3OD5.

Flow Rating:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	3000 psi (210 bar)
Min. Yield Pressure:	10,000 psi (690 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	2400 psi (165 bar), per NFPA T2.6.1
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 85 psi (5.9 bar)
Porting Head: Element Case:	Aluminum Aluminum
Weight of NFS30-1N: Weight of NFS30-1NN:	3.6 lbs. (1.6 kg) 4.3 lbs. (2.0 kg)
Element Change Clearance:	4.50" (115 mm)


Petroleum Based Fluids All E Media (cellulose), Z-Media® and ASP® Media (synthetic)

High Water Content All Z-Media® and ASP® media (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)

Water Glycols 3, 5, 10 and 25 μ Z-Media[®] and 3, 5 and 10 μ ASP[®] Media (synthetic)

Manifold Mounted Pressure Filter

Element Performance Information & Dirt Holding Capacity Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	4	tration Ratio Per 572/NFPA T3.10.8 article counter (APC) cali	per ISC	on Ratio D 16889 ated per ISO 11171	
Element	$\beta_x \geq 75$	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
NZ1/NNZ1	<1.0	<1.0	<1.0	<4.0	4.2
NZ3/NNZ3	<1.0	<1.0	<2.0	<4.0	4.8
NZ5/NNZ5	2.5	3.0	4.0	4.8	6.3
NZ10/NNZ10	7.4	8.2	10.0	8.0	10.0
NZ25/NNZ25	18.0	20.0	22.5	19.0	24.0

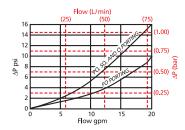
Element	DHC (gm)	Element	DHC (gm)
NZ1	12	NNZ1	15
NZ3	12	NNZ3	16
NZ5	12	NNZ5	18
NZ10	11	NNZ10	15
NZ25	11	NNZ25	15

Element Collapse Rating: 150 psid (10 bar) for standard elements

3000 psid (210 bar) for high collapse (ZX) versions

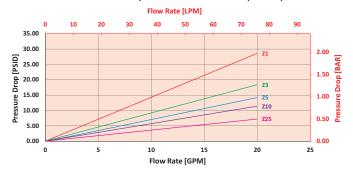
Flow Direction: Outside In

Element Nominal Dimensions: N: 1.75" (45 mm) O.D. x 5.25" (135 mm) long

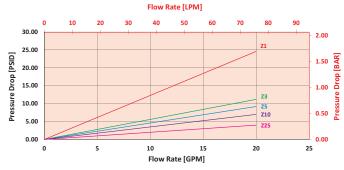

NN: 1.75" (45 mm) O.D. x 8.0" (200 mm) long

Manifold Mounted Pressure Filter

NFS30


 $\triangle \mathbf{P}_{\text{housing}}$

NFS30 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle \textbf{P}_{\text{element}}$

NZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

NNZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$$

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for NFS301NZ10SO using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta \mathbf{P}_{\text{housing}}$ at 15 gpm. In this case, $\Delta \mathbf{P}_{\text{housing}}$ is 10 psi (.69 bar) on the graph for the NFS30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the NZ10 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 10 \text{ psi } [.69 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 $V_f = 175 \text{ SUS } (37.2 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.2$

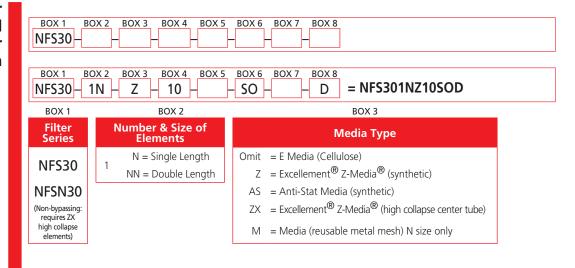
 $\Delta P_{\text{filter}} = 10 \text{ psi} + (8 \text{ psi} * 1.2) = 19.6 \text{ psi}$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .69 \text{ bar} + (.55 \text{ bar} * 1.2) = 1.35 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note:


If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f \text{ Plug this variable into the overall pressure drop equation.}$

Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
N3	1.10	NN3	0.77
N10	0.17	NN10	0.13
N25	0.10	NN25	0.07
NAS3	0.92	NNAS3	0.56
NAS5	0.71	NNAS5	0.46
NAS10	0.57	NNAS10	0.35

NFS30

Manifold Mounted Pressure Filter

Filter Model Number Selection

BOX 4	BOX 5	BOX 6	BOX 7
Micron Rating	Seal Material	Porting	Options
1 = 1 Micron (Z, ZX media)	Omit = Buna N	SO = SAE-12	Omit = None
3 = 3 Micron (AS,E, Z, ZX media)	V = Viton®	$PO = \frac{3}{4}$ " NPTF	X = Blocked
5 = 5 Micron (AS, Z, ZX media)	W = Buna N,	FO = 1" SAE 4-bolt	bypass (N/A
10 = 10 Micron (AS,E,M, Z, ZX media)	Anodized	flange Code 61	with
25 = 25 Micron (E, Z, ZX media)	Aluminum parts	O = Manifold	NFSN30)

BOX 8

	Dirt Alarm [®] Options
	Omit = None
Visual	D = Pointer
	D5 = Visual pop-up
Visual with	
Thermal Lockout	D8 = Visual w/ thermal lockout
LUCKUUI	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable
	MSSI C = Low current MSS
	MS10 = Electrical w/ DIN connector (male end only)
	MS10LC = Low current MS10
EL	MS11 = Electrical w/ 12 ft. 4-conductor wire
Electrical	MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)
	MS12LC = Low current MS12
	MS16 = Electrical w/ weather-packed sealed connector
	MS16LC = Low current MS16
	MS17LC = Electrical w/ 4 pin Brad Harrison male connector
	MS5T = MS5 (see above) w/ thermal lockout
	MS5LCT = Low current MS5T
Electrical	MS10T = MS10 (see above) w/ thermal lockout
with	MS10LCT = Low current MS10T
Thermal	MS12T = MS12 (see above) w/ thermal lockout
Lockout	MS12LCT = Low current MS12T
LOCKOUT	MS16T = MS16 (see above) w/ thermal lockout
	MS16LCT = Low current MS16T
	MS17LCT = Low current MS17T
Electrical	MS13 = Supplied w/ threaded connector & light
Visual	MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)
Electrical	MS13DCT = MS13 (see above), direct current, w/ thermal lockout
Visual with	MS13DCLCT = Low current MS13DCT
Thermal	MS14DCT = MS14 (see above), direct current, w/ thermal lockout

NOTES:

- Box 2. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5.
- Box 5. E media (cellulose) elements are only available with Buna N seals. For options V and W, all aluminum parts are anodized.

 Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 6. For option O, O-rings included; fastening hardware not included.
- Box 8. For options SO, PO and FO, available dirt alarm is D only.

Lockout MS14DCLCT = Low current MS14DCT

60 = 60 Micron (M media)

Top-Ported Pressure Filter YF30

Features and Benefits

- Top-ported pressure filter
- All aluminum assembly
- Meets HF2 automotive standards
- Offered in straight thread porting
- Optional drain plug in bowl for easy servicing
- Available with non-bypass option

Model No. of filter in photograph is YF308YZ10SD5.

Weight of YF30-8Y:

High Water Content All Z-Media® (synthetic)

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E Media (cellulose) and Z-Media® (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic) Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic)

Element Change Clearance:

Flow Rating: Up to 25 gpm (100 L/min) for 150 SUS (32 cSt) fluids Max. Operating Pressure: 3000 psi (210 bar) Min. Yield Pressure: 10,000 psi (690 bar), per NFPA T2.6.1 Rated Fatigue Pressure: 1800 psi (124 bar), per NFPA T2.6.1-2005 Temp. Range: -20°F to 225°F (-29°C to 107°C) Bypass Setting: Cracking: 50 psi (3.4 bar) Non-bypassing model has a blocked bypass. Aluminum Porting Head: Element Case: Aluminum Weight of YF30-4Y: 3.75 lbs. (1.70 kg)

4.25 lbs. (1.93 kg) 4.50" (115 mm)

25 gpm 100 L/min 3000 psi 210 bar

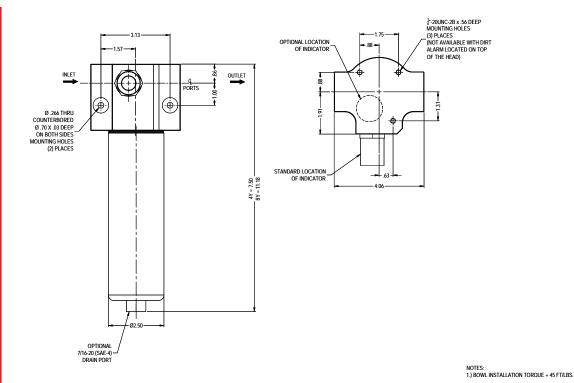
YF30

KF30 KF50

KC50

KC65

Fluid Compatibility


Filter

Housing

Specifications

20-CRZX10 SCHROEDER INDUSTRIES 55

Top-Ported Pressure Filter

Metric dimensions in ().

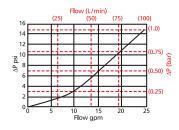
Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

		io Per ISO 4572/N article counter (APC) cal			o per ISO 16889 Ited per ISO 11171
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \geq 200$	$\beta_x(c) \ge 1000$
4YZ1/8YZ1	<1.0	<1.0	<1.0	<4.0	4.2
4YZ3/8YZ3	<1.0	<1.0	<2.0	<4.0	4.8
4YZ5/8YZ5	2.5	3.0	4.0	4.8	6.3
4YZ10/8YZ10	7.4	8.2	10.0	8.0	10.0
4YZ25/8YZ25	18.0	20.0	22.5	19.0	24.0
4YZX5/8YZX5	2.5	3.0	4.0	5.6	7.2
4YZX10/8YZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)	Element	DHC (gm)
4YZ1	6.3	8YZ1	12.1
4YZ3	5.1	8YZ3	9.9
4YZ5	6.4	8YZ5	12.4
4YZ10	5.4	8YZ10	10.5
4YZ25	4.9	8YZ25	9.4
4YZX5	4.3	8YZX5	8.9
4YZX10	4.3	8YZX10	8.9

Element Collapse Rating: 150 psid (10 bar) for standard elements

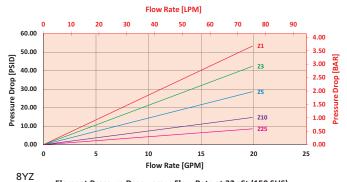
3000 psid (210 bar) for high collapse (ZX) versions

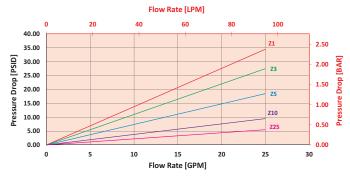

Flow Direction: Outside In

Element Nominal Dimensions: 4Y: 1.77 " (45 mm) O.D. x 4.50 " (114 mm) long 8Y: 1.77 " (45 mm) O.D. x 8.21 " (209 mm) long

Top-Ported Pressure Filter YF3

 $\triangle \mathbf{P}_{\text{housing}}$


YF30 \triangle **P**_{housing} for fluids with sp gr (specific gravity) = 0.86:


 $\triangle P_{element}$

4YZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$

Exercise:

Determine ΔP_{filter} at 10 gpm (37.9 L/min) for YF304YZ10WSDRD5 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 10 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the YF30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 10 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the 4YZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the Viscosity Factor (V.) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta \dot{\mathbf{P}}_{\text{element}}^* \vee_f$). The $\Delta \dot{\mathbf{P}}_{\text{element}}^*$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 $V_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$

$$\Delta \mathbf{P}_{\text{filter}} = 3 \text{ psi} + (8 \text{ psi} * 1.3) = 13.4 \text{ psi}$$

 $\Delta P_{\text{filter}} = .21 \text{ bar} + (.55 \text{ bar} * 1.3) = .93 \text{ bar}$

Pressure Drop **Information** Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \overline{\text{Flow}} \text{ Rate } \mathbf{x} \Delta \mathbf{P}_f \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	∆P	Ele.	ΔΡ	
4YZX5	1.65	8YZX5	0.92	
4YZX10	0.09	8YZX10	0.63	

Top-ported Pressure Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder YF30:

١.								
	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8
	DOX I	DOXE	DONS	DOX 1	DOKS	DONO	DOX 7	DONO
- 1	VESA							
	1 500 -		-		1 1			-

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	
YF30	- 4	-YZ10 -	- W	- S -		DR -	- D5	= YF304YZ10WSDRD5

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	Element Length (in)	Element Size and Media	Seal Material	Inlet Port
VE20	4	YZ1 = Y size 1 µ Excellement [®] Z-Media [®] (synthetic)	Omit = Buna N	S = SAE-12
YF30	8	YZ3 = Y size 3 µ Excellement [®] Z-Media [®] (synthetic)	V = Viton®	O = Subplate
YFN30 (Non- bypassing: requires ZX high collapse elements)		YZ5 = Y size 5 μ Excellement [®] Z-Media [®] (synthetic) YZ10 = Y size 10 μ Excellement [®] Z-Media [®] (synthetic) YZ25 = Y size 25 μ Excellement [®] Z-Media [®] (synthetic) YZX5 = Y size 5 μ Excellement [®] Z-Media [®] (high collapse center tube)	W = Buna N, Anodized Aluminum parts	(contact factory)
		YZX10 = Y size 10 μ Excellement [®] Z-Media [®]		

(high collapse center tube)

Visual

Visual

Thermal

Lockout

Lockout

with

BOX 6 Dirt Alarm® Location Omit = Side of filter head T = Top offilter

head

BOX 7 **Optional Bowl Drain**

Omit = No drain DR = Drain

BOX 8 **Dirt Alarm® Options** Omit = None D5 = Visual pop-up D8 = Visual w/ thermal lockout

MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable

MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire Electrical Electrical w/ 5 pin Brad Harrison connector MS12 =

(male end only)

MS5LC = Low current MS5

MS10 =

(male end only) MS12LC = Low current MS12

MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16

MS17LC = Electrical w/ 4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout

Electrical w/ DIN connector

MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout Electrical MS10LCT = Low current MS10T

with MS12T = MS12 (see above) w/ thermal lockout Thermal MS12LCT = Low current MS12T Lockout

MS16T = MS16 (see above) w/ thermal lockout

MS16LCT = Low current MS16T MS17LCT = Low current MS17T

MS13DC = Supplied w/ threaded connector & light Electrical Supplied w/ 5 pin Brad Harrison connector & light Visual MS14DC = (male end)

w/ thermal lockout

MS13 (see above), direct current, Electrical Visual MS13DCLCT = Low current MS13DCT with MS14 (see above), direct current, Thermal MS14DCT =

MS14DCLCT = Low current MS14DCT

Box 8. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.

Box 2. Replacement element

2,3, and 4.

part numbers are combination of Boxes

Example 4YZ10V

Box 4. For options V and W,

all aluminum parts are

registered trademark of

DuPont Dow Elastomers.

anodized. Viton® is a

NOTES:

Non-Bypassing Pressure Filter CFX30

Features and Benefits

- Top-ported non-bypassing pressure filter
- Unique valve eliminates need for high collapse elements, valve begins to close off flow at 50 psi: Differential Pressure and fully closes off flow by 80 psi: DP. This ensures that no un-filtered flow is allowed down stream to critical components.
- Offered in pipe, SAE straight thread and ISO 228 porting
- Integral inlet and outlet female test points option available

30 gpm 115 L/min 3000 psi 210 bar

Filter Housing **Specifications**

Fluid

Unique

Bypassing

Filtration:

A Better Way

Non-

That

Does Not

High Crush

Elements

Require

Compatibility

CFX30

KC65

20-CRZX10

Model No. of filter in photograph is CFX301CC10SD5.

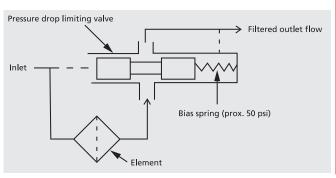
	_
Flow Rating:	Up to 30 gpm (115 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	3000 psi (210 bar)
Min. Yield Pressure:	12,000 psi (828 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	1800 psi (125 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Non-Bypassing
Porting Head: Element Case:	Aluminum Steel
Weight of CFX30-1CC:	19.5 lbs. (8.9 kg)
Element Change Clearance:	4.00" (100 mm)

Type Fluid	Appropriate Schroeder Media
alaum Basad Fluids	All E Madia (collulosa) 7 Madia® ar

Petroleum Based Fluids All E Media (cellulose), Z-Media® and ASP® Media (synthetic)

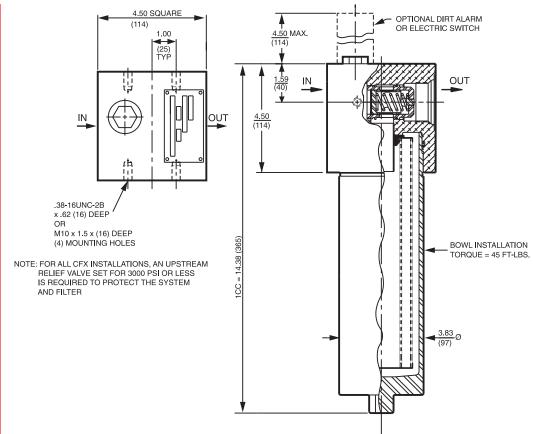
High Water Content All Z-Media® and ASP® media (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)


Water Glycols 3, 5, 10 and 25 µ Z-Media® and 3, 5 and 10 µ ASP® Media (synthetic)

Phosphate Esters All Z-Media® and ASP® media (synthetic) with H (EPR) seal designation

Skydrol[®] 3, 5, 10 and 25 μ Z-Media[®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)


Schroeder's CFX30 series is a non-bypassing filter that incorporates the use of a unique pressure drop limiting valve that maintains the differential pressure across the element below the element's collapse pressure rating. As the element accumulates dirt, the pressure drop increases across the element and, therefore, across the spool

of the valve. At 50 psi, the spool begins to move, restricting flow as needed to prevent the pressure drop from increasing further and compromising element integrity. This design allows the CFX30 filters to safely use the lower cost standard elements, eliminating the need for expensive high-crush replacement elements.

Non-Bypassing Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

	4	Itration Ratio Per I 1572/NFPA T3.10.8. Particle counter (APC) cali	8	per ISC	on Ratio D 16889 ated per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
CCZ1	<1.0	<1.0	<1.0	<4.0	4.2
CCZ3	<1.0	<1.0	<2.0	<4.0	4.8
CCZ5	2.5	3.0	4.0	4.8	6.3
CCZ10	7.4	8.2	10.0	8.0	10.0
CCZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)
CCZ1	57
CCZ3	58
CCZ5	63
CCZ10	62
CCZ25	63

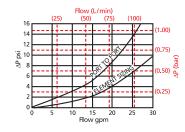
Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In

Element Nominal CC: 3.0" (75 mm) O.D. x 9.5" (240 mm) long

Dimensions:

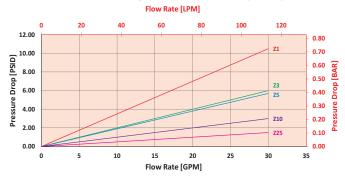
Non-Bypassing Pressure Filter CFX3



Pressure

Drop

 $\triangle \textbf{P}_{\text{housing}}$


CFX30 \triangle **P**_{housing} for fluids with sp gr (specific gravity) = 0.86:

 $\triangle P_{element}$

CCZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for CFX301CZ5SD5 using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the CFX30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the CZ5 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

 $V_f = 100 \text{ SUS } (21.3 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .67$

 $\Delta P_{\text{filter}} = .34 \text{ psi} + (.21 \text{ psi} * .67) = .48 \text{ psi}$

 $\Delta P_{\text{filter}} = .34 \text{ bar} + (.21 \text{ bar} * .67) = .48 \text{ bar}$

Information Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \bar{\text{Flow}} \text{ Rate x } \Delta \mathbf{P}_f$ Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$
CC3	0.22
CC10	0.13
CC25	0.03
CAS3/CCAS3	0.20
CAS5/CCAS5	0.19
CAS10/CCAS10	0.35

Non-Bypassing Pressure Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder CFX30:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8
CFX30							-

BOX 1 BOX	2 BOX 3	BOX 4 BO	X 5 BOX 6	BOX 7	BOX 8	
CFX30 – CC	H /	- 5 -	– S		- D5	= CFX30CCZ5SD5

BOX 1

CFX30

Filter Series

Number & Size of Elements

C = Single Length CC = Double Length

BOX 2

BOX 3

Media Type

Omit = E Media (cellulose)

Z = Excellement® Z-Media® (synthetic)

AS = Anti-Stat Media (synthetic)

M = Media (reusable metal mesh)

BOX 4

Micron Rating

1 = 1 Micron (Z-Media®) 3 = 3 Micron (E, Z, AS Media)

(Z, AS Media) 5 = 5 Micron 10 = 10 Micron (E, M, Z, AS Media)

25 = 25 Micron (E & Z-Media®)

BOX 5 Seal Material

Omit = Buna N V = Viton®

> W = Buna N,Anodized Aluminum parts

= EPR H 5 = Skydrol® compatibility BOX 6

Porting

S = SAE-20P = 11/4" NPTF

B = ISO 228 G-11/4"

BOX 7

Options

Omit = None

L = Two 1/4" NPTF inlet and outlet female test ports

U = Schroeder Check 7/16"-20 UNF Test Point installation in cap (upstream)

Electrical

BOX 8

Dirt Alarm® Options

Omit = None Visual D5 = Visual pop-up

Visual with Thermal D8 = Visual w/ thermal lockout Lockout

MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable

MS5LC = Low current MS5

MS10 = Electrical w/ DIN connector (male end only)

MS10LC = Low current MS10

MS11 = Electrical w/ 12 ft. 4-conductor wire

Electrical w/ 5 pin Brad Harrison connector MS12 =(male end only)

MS12LC = Low current MS12

MS16 = Electrical w/ weather-packed sealed connector

MS16LC = Low current MS16

MS17LC = Electrical w/ 4 pin Brad Harrison male connector

MS5T = MS5 (see above) w/ thermal lockout

MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout

Electrical MS10LCT = Low current MS10Twith

MS12T = MS12 (see above) w/ thermal lockout Thermal

MS12LCT = Low current MS12TLockout

MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T

MS17LCT = Low current MS17T

MS13DC = Supplied w/ threaded connector & light **Flectrical** Visual MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end)

Flectrical MS13DCT = MS13 (see above), direct current, w/ thermal lockout

MS13DCLCT = Low current MS13DCT Visual with

Thermal MS14DCT = MS14 (see above), direct current, w/ thermal lockout

Lockout MS14DCLCT = Low current MS14DCT

NOTES:

Box 2. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. E media (cellulose) elements are only available with Buna N seals.

Box 5. For options H, V, W, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.

Box 6. B porting option supplied with metric mounting holes.

Features and Benefits

■ Durable carbon steel construction

Filter housings are designed to withstand pressure surges as well as high static pressure loads

- Screw-in bowl allows the filter element to be easily removed for replacement or cleaning
- Standard model supplied with drain plugs
- Standard Viton® seal on filter housing
- Filter contains an integrated equalization valve
- Pressure is equalized between filters by raising the change-over lever prior to switching it to the relevant filter side

100 gpm 380 Ľ/min 3000 psi 210 bar

Filter Housing **Specifications**

Fluid

PLD

KF30

KF50

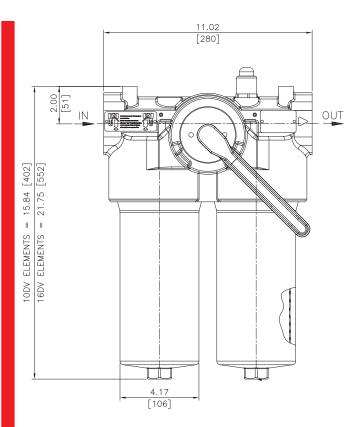
KC50

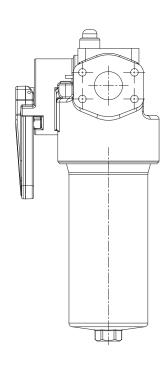
KC65

Compatibility

Model No. of filter in photograph is PLD10DVZ3VF24.

Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	3000 psi (207 bar)
Min. Yield Pressure:	10,600 psi (730 bar)
Rated Fatigue Pressure:	3000 psi (207 bar)
Temp. Range:	-22°F to 250°F (-30°C to 121°C)
Bypass Setting:	102 psi (7 bar)
3	Ductile Iron Steel
	97 lbs. (43.9 kg) 100 lbs. (45.3 kg)
Element Change Clearance:	10DV: 3.5" (89 mm) 16DV: 3.5" (89 mm)


Type Fluid Appropriate Schroeder Media


Petroleum Based Fluids All Z-Media® (synthetic)

Invert Emulsions 10 and 25 µ Z-Media® (synthetic)

Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic)

Metric dimensions in ().

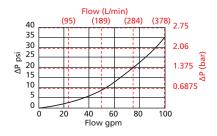
Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

		io Per ISO 4572/NF		per ISO 16889 ted per ISO 11171	
Element	β _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
10/16DVZ1	<1.0	<1.0	<1.0	<4.0	4.2
10/16DVZ3	<1.0	<1.0	<2.0	<4.0	4.8
10/16DVZ5	2.5	3.0	4.0	4.8	6.3
10/16DVZ10	7.4	8.2	10.0	8.0	10.0
10/16DVZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)
10DVZ1	57	16DVZ1	110
10DVZ3	59	16DVZ3	114
10DVZ5	64	16DVZ5	124
10DVZ10	62	16DVZ10	112
10DVZ25	63	16DVZ25	102

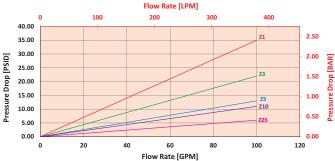
Element Collapse Rating: 290 psid (20 bar)

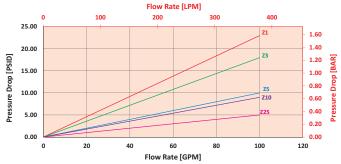

Flow Direction: Outside In

Element Nominal Dimensions: 3.0" (75 mm) O.D. x 14.5" (370 mm) long

PLD

 $\triangle \textbf{P}_{\text{housing}}$


PLD $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle \boldsymbol{P}_{\text{element}}$

10DVZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

16DVZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 50 gpm (189 L/min) for PLD10DVZ1VF24VM using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 8 psi (.55 bar) on the graph for the PLD housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 50 gpm. In this case, $\Delta P_{\text{element}}$ is 17.5 psi (1.2 bar) according to the graph for the 10DVZ1 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the **Viscosity Factor** (V_{f}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\Delta \mathbf{P}_{\text{housing}} = 8 \text{ psi } [.55 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 17.5 \text{ psi } [1.2 \text{ bar}]$

 $V_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$

$$\Delta \mathbf{P}_{\text{filter}} = 8 \text{ psi} + (17.5 \text{ psi} * 1.3) = 30.8 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .55 \text{ bar} + (1.2 \text{ bar} * 1.3) = 2.1 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f$. Plug this variable into the overall pressure drop equation.

		1			
Ele.	$\Delta \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
К3	0.25	KZW25	0.14	2KZW10	0.12
K10	0.09	2K3	0.12	2KZW25	0.07
K25	0.02	2K10	0.05	3K3	0.08
KAS3	0.10	2K25	0.01	3K10	0.03
KAS5	0.08	2KAS3	0.05	3K25	0.01
KAS10	0.05	2KAS5	0.04	3KAS3	0.03
KZX10	0.22	2KAS10	0.03	3KAS5	0.02
KZW1	0.43	2KZX10	0.11	3KAS10	0.02
KZW3	0.32	2KZW1	-	3KZX10	0.07
KZW5	0.28	2KZW3	0.16		
KZW10	0.23	2KZW5	0.14		

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder PLD:

BOX 1	BOX 3	1 E	3 BOX 4	BOX 5	BOX 6
PLD -) <u> </u>		_	-

_							
Т	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	
	DOX I	DOKE	DOKS	DOAL	DONS	DOMO	
	PID _	10	DV/71_	\/	F24	- VM	= PLD10DVZ1VF24VM
ı	I LD	10	DVZI	V	127	VIVI	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Length of Elements (in)	Element Size and Media	Seal Material
DI D	10	DVZ1 = DV size 1 μ synthetic media	Omit = Buna N
PLD	16	DVZ3 = DV size 3 μ synthetic media	V = Viton®
		DVZ5 = DV size 5 μ synthetic media	
		DVZ10 = DV size 10 µ synthetic media	
		DVZ25 = DV size 25 μ synthetic media	

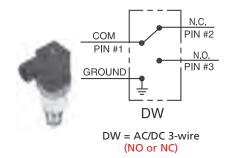
Porting

F24 = 1½" SAE 4-bolt flange Code 61

S24 = SAE-24 (1½")

BOX 5

Dirt Alarm® Options


Omit = None

Visual VM = Visual pop-up w/manual rest

Electrical DW = AC/DC 3-wire (NO or NC)

BOX 6

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 16DVZ10

Box 4. Filter housings are supplied with standard Viton seals. Seal designation in Box 4 applies to element only. Viton is a registered trademark of DuPont Dow Elastomers.

Top-Ported Pressure Filter CF40/DF40

Flow Rating:

Temp. Range:

Bypass Setting:

Porting Head: Element Case:

Max. Operating Pressure:

Rated Fatigue Pressure:

Weight of CF40/DF40-1C:

Weight of CF40/DF40-1CC:

Element Change Clearance:

Min. Yield Pressure:

Features and Benefits

■ Top-ported pressure filter

- Available with non-bypass option with high collapse element
- Offered in pipe, SAE straight thread and ISO 228 porting
- Integral inlet and outlet female test points option available
- No-Element indicator option available

Up to 45 gpm 170 L/min 4000 psi 275 bar

CF40

DF40

KC65

Fluid Compatibility

Filter

Housing **Specifications**

SCHROEDER INDUSTRIES 67

Petroleum Based Fluids All E Media (cellulose), Z-Media® and ASP® Media (synthetic)

Type Fluid Appropriate Schroeder Media

High Water Content All Z-Media® and ASP® Media (synthetic)

4000 psi (275 bar)

Aluminum

14.0 lbs. (6.4 kg)

19.5 lbs. (8.9 kg)

Steel

Invert Emulsions 10 and 25 μ Z-Media® (synthetic), 10 μ ASP® Media (synthetic) Water Glycols 3, 5, 10 and 25 µ Z-Media® (synthetic), and all ASP® Media (synthetic)

Phosphate Esters All Z-Media® and ASP® Media (synthetic) with H (EPR) seal designation

3, 5, 10 and 25 μ Z-Media (synthetic) and all ASP Media (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating

CF40 - 45 gpm (170 L/min) for 150 SUS (32 cSt) fluids DF40 - 30 gpm (113 L/min) for 150 SUS (32 cSt) fluids

12,000 psi (828 bar), per NFPA T2.6.1

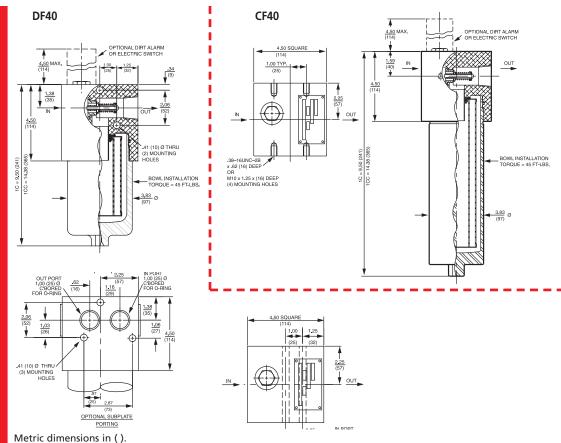
-20°F to 225°F (-29°C to 107°C)

4.00" (100 mm) for C elements

8.75" (219 mm) for CC elements

Cracking: 40 psi (2.8 bar)

Full Flow: 72 psi (5.0 bar)


1800 psi (125 bar), per NFPA T2.6.1-2005

Non-bypassing model has a blocked bypass.

on housing exterior)

20-CRZX10

F40/DF40 Top-Ported Pressure Filter

Element Performance Information & Dirt Holding Capacity Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

		tio Per ISO 4572/N article counter (APC) cali		per ISO 16889 ated per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
CZ1/CCZ1	<1.0	<1.0	<1.0	<4.0	4.2
CZ3/CCZ3	<1.0	<1.0	<2.0	<4.0	4.8
CZ5/CCZ5	2.5	3.0	4.0	4.8	6.3
CZ10/CCZ10	7.4	8.2	10.0	8.0	10.0
CZ25/CCZ25	18.0	20.0	22.5	19.0	24.0
CCZX3	<1.0	<1.0	<2.0	4.7	5.8
CCZX10	7.4	8.2	10.0	8.0	9.8

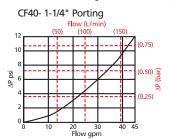
Element	DHC (gm)	Element	DHC (gm)	
CZ1	25	CCZ1	57	
CZ3	26	CCZ3	58	
CZ5	30	CCZ5	63	
CZ10	28	CCZ10	62	
CZ25	28	CCZ25	63	
		CCZX3	26*	
		CCZX10	28*	

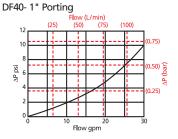
Element Collapse Rating: 150 psid (10 bar) for standard elements

3000 psid (210 bar) for high collapse (ZX) versions

Outside In Flow Direction:

Element Nominal Dimensions: C: 3.0" (75 mm) O.D. x 4.75" (120 mm) long

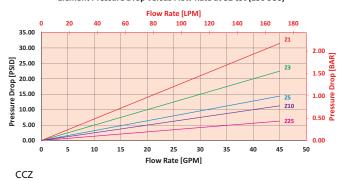

CC: 3.0" (75 mm) O.D. x 9.5" (240 mm) long

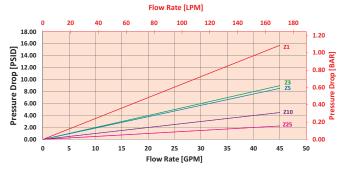

* Based on 100 psi terminal pressure

Top-Ported Pressure Filter CF40/DF40

 $\triangle \mathbf{P}_{\text{housing}}$

CF40/DF40 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:




 $\triangle \mathbf{P}_{\mathsf{element}}$

CZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$

Exercise:

Determine ΔP_{filter} at 25 gpm (94.6 L/min) for CF401CZ10SD5 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 25 gpm. In this case, $\Delta P_{\text{housing}}$ is 4.5 psi (.31 bar) on the graph for the CF40 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 25 gpm. In this case, $\Delta P_{\text{element}}$ is 6 psi (.42 bar) according to the graph for the CZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta \dot{\mathbf{P}}_{\text{element}}^* \vee_f$). The $\Delta \dot{\mathbf{P}}_{\text{element}}^*$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

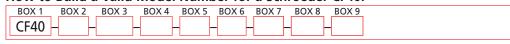
 $\Delta \mathbf{P}_{\text{housing}} = 4.5 \text{ psi } [.31 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 6 \text{ psi } [.42 \text{ bar}]$

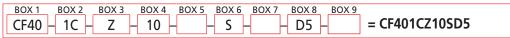
 $V_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$

$$\Delta P_{\text{filter}} = 4.5 \text{ psi} + (6 \text{ psi} * 1.3) = 12.3 \text{ psi}$$

 $\Delta P_{\text{filter}} = .31 \text{ bar} + (.42 \text{ bar} * 1.3) = .86 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity


If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f \text{ Plug}$ this variable into the overall pressure drop equation.


siessare arop equation.						
Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$			
C3	0.50	CC3	0.22			
C10	0.19	CC10	0.13			
C25	0.09	CC25	0.03			
CAS3	0.50	CCAS3	0.20			
CAS5	0.32	CCAS5	0.19			
CAS10	0.25	CCAS10	0.10			
		CCZX3	0.29			
		CCZX10	0.26			

0/DF40 Top-Ported Pressure Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder CF40:

BOX 3 BOX 1 BOX 2

BOX 4

Micron Rating

(Z, ZX media)

(AS, E, Z, ZX media)

(AS, E, M, Z, ZX media)

(AS, Z, ZX media)

(E & Z media®)

Visual

Visual with

Electrical

Electrical

Number and Size of Elements Filter Series (**CF40** 1

CC

= 1 Micron

= 3 Micron

= 5 Micron

= 10 Micron

= 25 Micron

CFN40

(Nonbypassing: requires ZX high collapse elements)

DF40

DFN40

(Nonbypassing: requires ZX high collapse elements)

Media Type

E Media(Cellulose) Omit = Excellement® Z-Media® (synthetic)

= Excellement® Z-Media® (high collapse center tube)

= Anti-Stat Media (synthetic)

= Media (reusable metal mesh) D size only

BOX 5

Seal Material

Omit = Buna N V = Viton® W = Buna N

> Anodized Aluminum parts

Н = FPR

= Skydrol® H.5 compatibility

BOX 6 *Only for CF40 Configuration

Porting

S = SAE-20"P = 11/4" NPTF

B = ISO 228

G-11/4"

BOX 6 (Cont.) *Only for DF40 Configuration

Porting

O = Manifold mounting

S = SAE-16

P = 1" NPTF B = ISO 228 G-1

BOX 7

3

5

10

Options

Omit = None

X = Blocked bypass

25 = 25 psi bypass setting

30 = 30 psi bypass setting

50 = 50 psi bypass setting

60 = 60 psi bypass setting

75 = 75 psi bypass setting L = Two 1/4" NPTF inlet

and outlet female test ports

BOX 8

Dirt Alarm® Options

Omit = None D = Pointer

D5 = Visual pop-up

Thermal D8 = Visual w/ thermal lockout Lockout

> MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5

MS10 = Electrical w/ DIN connector (male end only)

MS10LC = Low current MS10

MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)

MS12LC = Low current MS12

MS16 = Electrical w/ weather-packed sealed connector

MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector

MS5T = MS5 (see above) w/ thermal lockout

MS5LCT = Low current MS5T

MS10T = MS10 (see above) w/ thermal lockout

MS10LCT = Low current MS10T with

MS12T = MS12 (see above) w/ thermal lockout Thermal

MS12LCT = Low current MS12T Lockout

MS16T = MS16 (see above) w/ thermal lockout

MS16LCT = Low current MS16T MS17LCT = Low current MS17T

 $MS = Cam operated switch w/ <math>\frac{1}{2}$ " conduit female connection Electrical

MS13DC = Supplied w/ threaded connector & light Visual MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end)

MS13DCT = MS13 (see above), direct current, w/ thermal lockout Electrical

MS13DCLCT = Low current MS13DCT Visual with

Thermal MS14DCT = MS14 (see above), direct current, w/ thermal lockout Lockout MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5.
- Box 5. For options H, V, W, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 6. B porting option supplied with metric mounting holes.
- Box 7. Options X and 50 are not available with CFN40 or DFN40.
- Box 8. Standard indicator setting for nonbypassing model is 50 psi unless otherwise noted.
- Box 9. N option is not available with CFN40 or DFN40. N option should be used in conjunction with dirt alarm.

DF40)

N = No-Element

Indicator

(CF40 or

BOX 9

Additional

Options

Omit = None

Top-Ported Pressure Filter

Features and Benefits

- Top-ported pressure filter
- All steel housing offers unparalleled fatigue rating
- Available with non-bypass option with high collapse element
- Two bowl lengths provide optimal sizing for the application
- Offered in conventional sub-plate, SAE straight thread, and ISO 228 porting

50 gpm 190 L/min 4000 psi 275 bar

PF40

KF30 KF50

KC50

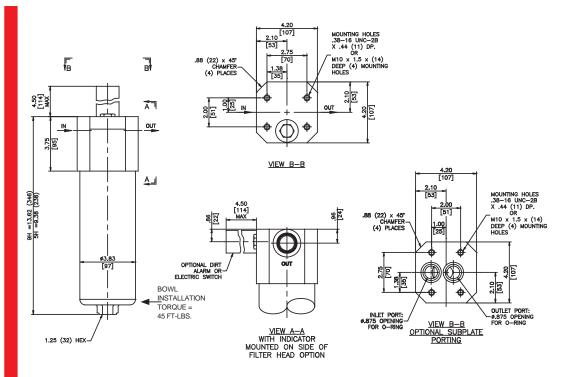
KC65

KFH50

Fluid		
Com	oatib	ility

Filter Housing **Specifications**

NOF-50-760


20-CRZX10

Model No. of filter in photograph is PF409HZ10S.

Flow Rating:	Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	4000 psi (275 bar)
Min. Yield Pressure:	12,000 psi (828 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	2500 psi (173 bar), per NFPA T2.6.1-R1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar)
Porting Head: Element Case:	Steel Steel
Weight of PF40-5H: Weight of PF40-9H:	21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg)
Element Change Clearance:	3.25" (83 mm)

Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All E Media (cellulose) and Z-Media® (synthetic) High Water Content All Z-Media® (synthetic) **Invert Emulsions** 10 and 25 μ Z-Media® (synthetic) Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic) Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation

Top-Ported Pressure Filter

Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

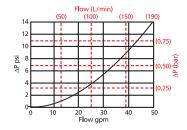
Element Performance Information & Dirt Holding Capacity

		tio Per ISO 4572/N article counter (APC) cal	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	β _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
5HZ1/9HZ1	<1.0	<1.0	<1.0	<4.0	4.2
5HZ3/9HZ3	<1.0	<1.0	<2.0	<1.0	4.8
5HZ5/9HZ5	2.5	3.0	4.0	4.8	6.3
5HZ10/9HZ10	7.4	8.2	10.0	8.0	10.0
5HZ25/9HZ25	18.0	20.0	22.5	19.0	24.0
5HZX1/9HZX1	<1.0	<1.0	<1.0	<4.0	4.2
5HZX3/9HZX3	<1.0	<1.0	<2.0	<1.0	4.8
5HZX5/9HZX5	2.5	3.0	4.0	4.8	6.3
5HZX10/9HZX10	7.4	8.2	10.0	8.0	10.0
5H7X25/9H7X25	18.0	20.0	22 5	19.0	24 0

Flammant	DHC	Fla	DHC	Flamand	DHC	Flamant	DHC
Element	(gm)	Element	(gm)	Element	(gm)	Element	(gm)
5HZ1	26	9HZ1	51	5HZX1	14	9HZX1	29
5HZ3	28	9HZ3	42	5HZX3	14	9HZX3	29
5HZ5	39	9HZ5	59	5HZX5	15	9HZX5	31
5HZ10	31	9HZ10	47	5HZX10	15	9HZX10	31
5HZ25	32	9HZ25	48	5HZX25	16	9HZX25	33

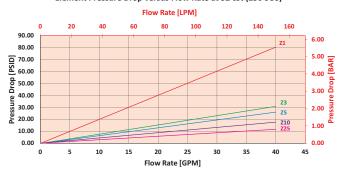
Element Collapse Rating: 150 psid (10 bar) for standard elements

3000 psid (210 bar) for high collapse elements

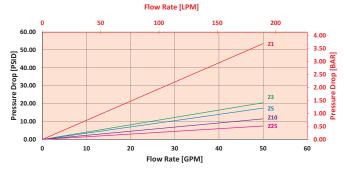

Flow Direction: Outside In

Element Nominal Dimensions: 5H: 2.5" (100 mm) O.D. x 5.36" (136 mm) long

9H: 2.5" (100 mm) O.D. x 9.63" (244 mm) long


 $\triangle \textbf{P}_{\text{housing}}$

PF40 \triangle P_{housing} for fluids with sp gr (specific gravity) = 0.86:



 $\triangle P_{element}$

5HZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

9HZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 20 gpm (75.7 L/min) for PF405HZ3SD5S using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 20 gpm. In this case, $\Delta P_{\text{housing}}$ is 2.5 psi (.17 bar) on the graph for the PF40 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 20 gpm. In this case, $\Delta P_{\text{element}}$ is 15 psi (1 bar) according to the graph for the 5HZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 2.5 \text{ psi } [.17 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 15 \text{ psi } [1 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 2.5 \text{ psi} + (15 \text{ psi} * 1.1) = 19 \text{ psi}$$

 $\Delta P_{\text{filter}} = .17 \text{ bar} + (1 \text{ bar} * 1.1) = 1.3 \text{ bar}$

Pressure Drop **Information** Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \overline{\text{Flow}} \text{ Rate x } \Delta \mathbf{P}_f$ Plug this variable into the overall pressure drop equation.

$\triangle \mathbf{P}$
1.17
0.50
0.27
0.62
0.26
0.14

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder PF40:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9
PF40		-			-	-	_	

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	
PF40	- 5 -	HZ3		- S -		D5 -	- S -	-	= PF405HZ3SD5S

BOX 1	BOX 2	BOX 3
Filter Series	Element Length (in)	Element Part Number
PF40	5	HZ1 = H size 1 μ Excellement® Z-Media® (synthetic)
PFN40	9	HZ3 = H size 3 μ Excellement® Z-Media® (synthetic)
(Non-		HZ5 = H size 5 μ Excellement® Z-Media® (synthetic)
bypassing: requires ZX		HZ10 = H size 10 μ Excellement® Z-Media® (synthetic)
high collapse elements)		HZ25 = H size 25 μ Excellement® Z-Media® (synthetic)
		HZX3 = H size 3 μ Excellement® Z-Media® (high collapse center tube)
		HZX10 = H size 10 μ Excellement® Z-Media® (high collapse center tube)
		HZX25 = H size 25 μ Excellement® Z-Media® (high collapse center tube)

BOX 4	BOX 5	BOX 6
Seal Material	Porting	Options
Omit = Buna N	O = Manifold	Omit = None
H = EPR	S = SAE-16	L = Two ¼" NPTF inlet & outlet female test ports
V = Viton®	B = ISO 228 G-1"	U = Schroeder Check ⅓6"-20 UNF test point
H.5 = Skydrol® compatibility		installation in head (upstream)

ROX 7 ROY 8

	BOX 7	BOX 8
	Dirt Alarm [®] Options	Dirt Alarm [®] Location
	Omit = None	Omit = Top mounted
Visual	D5 = Visual pop-up	S = Side mounted
Visual with	D8 = Visual w/ thermal lockout	3 = Side Modified
Thermal		
Lockout		BOX 9
	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable	Bowl Drain Options
	MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only)	•
	MS10LC = Low current MS10	Omit = None
	MS11 = Electrical w/ 12 ft. 4-conductor wire	DR = Drain 7/16"-20
Electrical	MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)	
	MS12LC = Low current MS12	
	MS16 = Electrical w/ weather-packed sealed connector	
	MS16LC = Low current MS16	
	MS17LC = Electrical w/ 4 pin Brad Harrison male connector	
	MS5T = MS5 (see above) w/ thermal lockout	
	MS5LCT = Low current MS5T	
Electrical	MS10T = MS10 (see above) w/ thermal lockout	
with	MS10LCT = Low current MS10T	
Thermal	MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T	
Lockout	MS16T = MS16 (see above) w/ thermal lockout	
	MS16LCT = Low current MS16T	
	MS17LCT = Low current MS17T	
Electrical	MS13DC = Supplied w/ threaded connector & light	
Visual	MS14DC = Supplied w/ threaded connector & light (male end)	
	MS13DCT = MS13 (see above), direct current, w/ thermal lockout	
Electrical Visual with	MS13DCLCT = Low current MS13DCT	
visuai willi		

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 5HZ10V
- Box 4. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol® is a registered trademark of Solutia Inc.
- Box 5. B porting option supplied with metric mounting holes.
- Box 7. Standard indicator setting for nonbypassing model is 50 psi unless otherwise noted.

Thermal

Lockout

Manifold Mounted Pressure Filter RFS50

Features and Benefits

- Manifold mounted high pressure filter
- Offered in square head conventional subplate porting
- Direct mounting to customer's manifold
- Standard drain plug in bowl for easy servicing
- Various dirt alarm options available

30 gpm 115 L/min 5000 psi 345 bar

RFS50

KF30

KF50

KC50

KC65

Fluid Compatibility

Filter Housing **Specifications**

20-CRZX10

Model No. of filter in photograph is RFS508R10O.

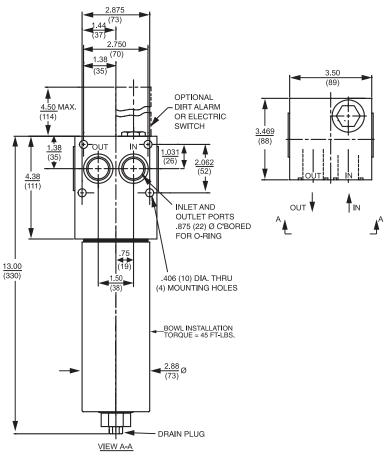
	_
Flow Rating:	Up to 30 gpm (115 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	5000 psi (345 bar)
Min. Yield Pressure:	15,500 psi (1070 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	Contact Factory
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 56 psi (3.9 bar)
Porting Head: Element Case:	
Weight of RFS50-8R:	16.50 lbs. (7.5 kg)
Element Change Clearance:	3.0" (75 mm)

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E Media (cellulose) and Z-Media® (synthetic)

High Water Content All Z-Media® (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic)


Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation

Skydrol[®] 3, 5, 10 and 25 μ Z-Media[®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

SCHROEDER INDUSTRIES 75

Manifold Mounted Pressure Filter

Element Performance Information & Dirt Holding Capacity

Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

		tio Per ISO 4572/N article counter (APC) cal		per ISO 16889 ted per ISO 11171	
Element	$\beta_x \geq 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
8RZ1	<1.0	<1.0	<1.0	<4.0	4.2
8RZ3	<1.0	<1.0	<2.0	<4.0	4.8
8RZ5	2.5	3.0	4.0	4.8	6.3
8RZ10	7.4	8.2	10.0	8.0	10.0
8RZ25	18.0	20.0	22.5	19.0	24.0

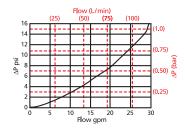
Element	DHC (gm)	
8RZ1	33	
8RZ3	26	
8RZ5	51	
8RZ10	29	
8RZ25	30	

Element Collapse Rating: 150 psid (10 bar) for standard elements

> Flow Direction: Outside In

Element Nominal Dimensions: 2.18" (55 mm) O.D. x 8.15" (206 mm) long

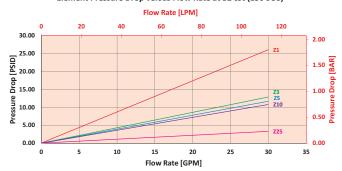
Manifold Mounted Pressure Filter


RFS50

Pressure

Drop

 $\triangle \mathbf{P}_{\text{housing}}$


RFS50 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \textbf{P}_{\text{element}}$

8RZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for RFS508RZ10VOD5 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the RFS50 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 5 psi (.34 bar) according to the graph for the 8RZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\triangle \mathbf{P}_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 5 \text{ psi } [.34 \text{ bar}]$

 $V_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$

 $\Delta \mathbf{P}_{\text{filter}} = 5 \text{ psi} + (5 \text{ psi} * 1.3) = 11.5 \text{ psi}$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .34 \text{ bar} + (.34 \text{ bar} * 1.3) = .78 \text{ bar}$

Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta \textbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \textbf{P}_{f.} \text{ Plug this variable into the overall pressure drop equation.}$

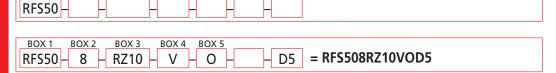
Ele.	ΔP
8R3	0.35
8R10	0.30

RFS50

Manifold Mounted Pressure Filter

BOX 4 BOX 5 BOX 6 BOX 7

Filter Model Number Selection


BOX 1

BOX 2

BOX 4

BOX 3

How to Build a Valid Model Number for a Schroeder RFS50:

BOX 6

BOX 1 BOX 2 BOX 3 Element Length (in) **Filter Element Size and Media** Series R3 = R size 3 μ E media (cellulose) 8 RFS50 R10 = R size 10 μ E media (cellulose) RZ1 = R size 1 μ Excellement® Z-Media® (synthetic) RZ3 = R size 3 μ Excellement® Z-Media® (synthetic) RZ5 = R size 5 μ Excellement® Z-Media® (synthetic) RZ10 = R size 10 μ Excellement® Z-Media® (synthetic) RZ25 = R size 25 μ Excellement® Z-Media® (synthetic)

Seal Material Inlet Port Options Omit = Buna N O = ManifoldOmit = None mounting H = EPRX = Blocked bypass V = Viton® 50 = 50 psi bypass setting L = Two 1/4" NPTF inlet and outlet female test ports U = Schroeder Check $\frac{7}{16}$ "-20 UNF Test Point installation in head (upstream)

BOX 5

BOX 7

	BOX.
	Dirt Alarm [®] Options
	Omit = None
Visual	D5 = Visual pop-up
Visual with	D8 = Visual w/ thermal lockout
Thermal	BO = VISUAL W. CHEMIAN IOCKOUL
Lockout	
	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable
	MS5LC = Low current MS5
	MS10 = Electrical w/ DIN connector (male end only)
	MS10LC = Low current MS10
Electrical	MS11 = Electrical w/ 12 ft. 4-conductor wire
2.000001	MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)
	MS12LC = Low current MS12
	MS16 = Electrical w/ weather-packed sealed connector
	MS16LC = Low current MS16
	MS17LC = Electrical w/ 4 pin Brad Harrison male connector
	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T
	MS10T = MS10 (see above) w/ thermal lockout
Electrical	MS10LCT = Low current MS10T
with	MS12T = MS12 (see above) w/ thermal lockout
Thermal	MS12LCT = Low current MS12T
Lockout	MS16T = MS16 (see above) w/ thermal lockout
	MS16LCT = Low current MS16T
	MS17LCT = Low current MS17T
	MS13DC = Supplied w/ threaded connector & light
Electrical	MS14DC= Supplied w/ threaded connector & light MS14DC= Supplied w/ 5 pin Brad Harrison connector & light
Visual	(male end)
Electrical	MS13DCT = MS13 (see above), direct current, w/ thermal lockout
Visual	MS13DCLCT = Low current MS13DCT
with	
Thermal	MS14DCT = MS14 (see above), direct current, w/ thermal lockout
	NACA ADOLOT

MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4.
- Box 3. Example: 8RZ1V synthetic media elements are only available with Viton seals.
- Box 4. Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 5. For option O, O-rings included, fastening hardware not included.

Lockout

Features and Benefits

- Top-ported high pressure filter
- Offered in pipe, SAE straight thread, flanged and ISO 228 porting
- Available with non-bypass option with high collapse element
- Various dirt alarm options available

30 gpm 115 L/min 6000 psi 415 bar

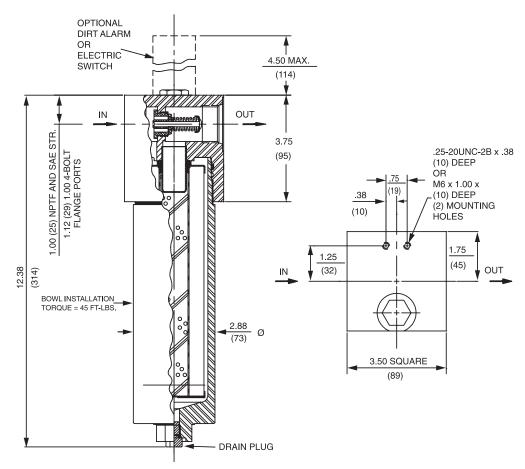
RF60

KF30

KF50

KC50

KC65


Fluid Compatibility

Filter Housing **Specifications**

20-CRZX10

Flow Rating:	Up to 30 gpm (115 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	6000 psi (415 bar)
Min. Yield Pressure:	18,000 psi (1241 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	2300 psi (159 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 56 psi (3.9 bar) Non-bypassing model has a blocked bypass.
Porting Head: Element Case:	
Weight of RF60-8R:	15.75 lbs. (7.2 kg)
Element Change Clearance:	3.0" (75 mm)

Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All E-Media (cellulose) and Z-Media® (synthetic) High Water Content All Z-Media® (synthetic) **Invert Emulsions** 10 and 25 μ Z-Media® (synthetic) Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic) Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation Skydrol[®] 3, 5, 10 and 25 µ Z-Media[®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

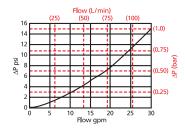
Element Performance Information & Dirt Holding Capacity

		tio Per ISO 4572/N article counter (APC) cal	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
8RZ1	<1.0	<1.0	<1.0	<4.0	4.2
8RZ3	<1.0	<1.0	<2.0	<4.0	4.8
8RZ5	2.5	3.0	4.0	4.8	6.3
8RZ10	7.4	8.2	10.0	8.0	10.0
8RZ25	18.0	20.0	22.5	19.0	24.0
8RZX3	<1.0	<1.0	<2.0	4.7	5.8
8RZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)	
8RZ1	33	
8RZ3	26	
8RZ5	51	
8RZ10	29	
8RZ25	30	
8RZX3	C/F	
8RZX10	C/F	

Element Collapse Rating: 150 psid (10 bar) for standard elements

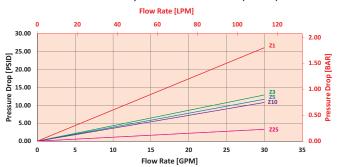
3000 psid (210 bar) for high collapse (ZX) versions


Flow Direction: Outside In

Element Nominal Dimensions: 2.18" (55 mm) O.D. x 8.15" (206 mm) long

RF60

 $\triangle \textbf{P}_{\text{housing}}$


RF60 \triangle **P**_{housing} for fluids with sp gr (specific gravity) = 0.86:

 $\triangle P_{element}$

8RZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for RF608RZ10VPD5 using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the RF60 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 5 psi (.34 bar) according to the graph for the 8RZ10 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\triangle \mathbf{P}_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 5 \text{ psi } [.34 \text{ bar}]$

 $V_f = 100 \text{ SUS } (21.3 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .67$

 $\Delta \mathbf{P}_{\text{filter}} = 5 \text{ psi + (5 psi * .67)} = 8.3 \text{ psi}$

<u>OR</u>

 $\Delta \mathbf{P}_{\text{filter}} = .34 \text{ bar} + (.34 \text{ bar} * .67) = .57 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta \textbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \textbf{P}_{f.} \text{ Plug this variable into the overall pressure drop equation.}$

Ele.	$\triangle \mathbf{P}$
8R3	0.35
8R10	0.30
8RZX3	C/F
8RZX10	C/F

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder RF60:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7
RF60]					

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	
DECU	_	D710	_ \/ _	D		DE	= RF608RZ10VPD5
L LOU	- 0 -	R∠ IU	- v -		7	כט -	- IN 000N2 10 VI D3

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Element Length (in)	Element Size and Media	Seal Material
RF60	8	R3 = R size 3 μ E media (cellulose) R10 = R size 10 μ E media (cellulose)	Omit = Buna N H = EPR
RFN60 (Non- bypassing: requires ZX high collapse elements)		RZ1 = R size 1 μ Excellement® Z-Media® (synthetic) RZ3 = R size 3 μ Excellement® Z-Media® (synthetic) RZ5 = R size 5 μ Excellement® Z-Media® (synthetic) RZ10 = R size 10 μ Excellement® Z-Media® (synthetic) RZ25 = R size 25 μ Excellement® Z-Media® (synthetic)	V = Viton®
		RZX3 = R size 3 μ Excellement® Z-Media® (high collapse center tube) RZX10 = R size 10 μ Excellement® Z-Media® (high collapse center tube)	

BOX 5 BOX 7

Inlet Port	
P = 1" NPTF	
S = SAE-16	Visual v
F = 1" SAE 4-bolt flange Code 62	Ther
B = ISO 228 G-1"	

BOX 6

Options

Omit = None

X = Blockedbypass

50 = 50 psi bypass setting

L = Two 1/4" NPTF inlet and outlet female test ports

U = Schroeder Check 7/16"-20 **UNF Test Point** installation in

head (upstream)

	Dirt Alarm [®] Options	
	Omit = None	
Visual	D5 = Visual pop-up	
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout	
Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-cond MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison cond MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison magnetical w/ 4 pin Brad Harrison m/ 4 pin Brad	nd only) e nector (male end only) d connector ale connector
Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockou MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal locko MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal locko MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal locko MS16LCT = Low current MS16T MS17LCT = Low current MS17T	out out out
Electrical Visual	MS13DC = Supplied w/ threaded connector & l MS14DC = Supplied w/ 5 pin Brad Harrison cor (male end)	
Electrical Visual with Thermal Lockout	MS13DCT = MS13 (see above), direct current, w MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w MS14DCLCT = Low current MS14DCT	

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 8RZ1V synthetic media elements are only available with Viton seals.

Box 4. Viton® is a registered trademark of DuPont Dow Elastomers.

Box 5. B porting option supplied with metric mounting holes.

Box 6. Options X and 50 are not available with RFN60.

Box 7. Standard indicator setting for non-bypassing model is 50 psi unless otherwise noted.

Features and Benefits

■ Top-ported high pressure filter

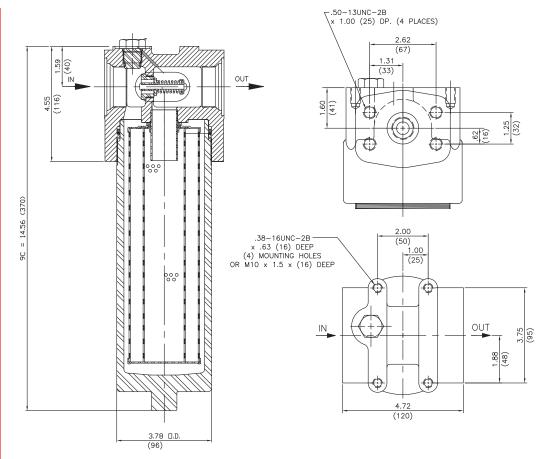
- Available with non-bypass option with high collapse element
- Offered in pipe, SAE straight thread, flange and ISO 228 porting
- No-Element indicator option available

50 gpm 190 L/min 6000 psi 415 bar

CF60

KF30

KC50


KC65

Filter Housing **Specifications**

NOF-50-760

Flow Rating:	Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	6000 psi (415 bar)
Min. Yield Pressure:	15,500 psi (1070 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	4000 psi (276 bar), per NFPA T2.6.1-R1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Non-bypassing model has a blocked bypass.
Porting Head: Element Case:	
Weight of CF60-9C:	24.0 lbs. (10.9 kg)
Element Change Clearance:	4.0" (103 mm)

Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All E-Media (cellulose), Z-Media® and ASP® Media (synthetic) High Water Content All Z-Media® and ASP® Media (synthetic) Invert Emulsions 10 and 25 μ Z-Media® (synthetic) and 10 μ ASP® Media (synthetic) Water Glycols 3, 5, 10 and 25 μ Z-Media[®] and all ASP[®] Media (synthetic) Phosphate Esters All Z-Media® and ASP® Media (synthetic) with H (EPR) seal designation Skydrol[®] 3, 5, 10 and 25 µ Z-Media[®] and all ASP[®] Media (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

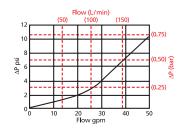
Element Performance Information & Dirt Holding Capacity

		tio Per ISO 4572/N particle counter (APC) cali	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
CCZ1	<1.0	<1.0	<1.0	<4.0	4.2
CCZ3	<1.0	<1.0	<2.0	<4.0	4.8
CCZ5	2.5	3.0	4.0	4.8	6.3
CCZ10	7.4	8.2	10.0	8.0	10.0
CCZ25	18.0	20.0	22.5	19.0	24.0
CCZX3	<1.0	<1.0	<2.0	4.7	5.8

Element	DHC (gm)	
CCZ1	57	
CCZ3	58	
CCZ5	63	
CCZ10	62	
CCZ25	63	
CCZX3	26*	

Element Collapse Rating: 150 psid (10 bar) for standard elements

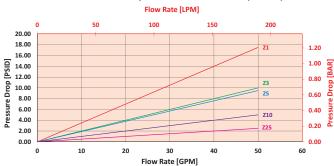
3000 psid (210 bar) for high collapse (ZX) versions


Flow Direction: Outside In

Element Nominal Dimensions: CC: 3.0" (75 mm) O.D. x 9.5" (240 mm) long

CF60

 $\triangle \textbf{P}_{\text{housing}}$


CF60 \triangle **P**_{housing} for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \boldsymbol{P}_{element}$

CCZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 30 gpm (113.6 L/min) for CF601CCZ10SD5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 30 gpm. In this case, $\Delta P_{\text{housing}}$ is 4 psi (.28 bar) on the graph for the CF60 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 30 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the CCZ10 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\Delta \mathbf{P}_{\text{housing}} = 4 \text{ psi } [.28 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

 $V_f = 175 \text{ SUS } (37.2 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.2$

 $\Delta \mathbf{P}_{\text{filter}} = 4 \text{ psi} + (3 \text{ psi} * 1.2) = 7.6 \text{ psi}$

OR

 $\Delta \mathbf{P}_{\text{filter}}$ = .28 bar + (.21 bar * 1.2) = .53 bar

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_f$. Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$
CC3	0.22
CC10	0.13
CC25	0.03
CCAS3	0.20
CCAS5	0.19
CCAS10	0.10
CCZX3	0.29
CCZX10	0.26

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder CF60:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9
CF60			-			-[-	_

BOX 1 BOX 2	BOX 3	BOX 4 BOX !	5 BOX 6 BOX 7	BOX 8 BOX 9	
CF60 – 1CC	– Z	– 10 –	- S -	– D5 –	= CF601CCZ10SD5

BOX 3 BOX 1 BOX 2 Number nd Size of Filter and Size o Elements **Media Type** Series **CF60** 1CC E Media (cellulose) Omit Z = Excellement® Z-Media® (synthetic) CFN60 ZX = Excellement® Z- Media® (high collapse center tube) (Non-bypassing: requires ZX high collapse AS = Anti-Stat Media (synthetic) elements)

BOX 5 BOX 6 BOX 4 Seal **Porting** Micron Rating Material Omit = Buna N S = SAE-20= 1 Micron (Z media) V = Viton® $P = 1\frac{1}{4}$ " NPTF 3 = 3 Micron (AS,E, Z and ZX media) H = EPR $F = 1\frac{1}{4}$ " SAE 4-bolt 5 = 5 Micron (AS, Z, and ZX media) flange code 62 H.5 = Skydrol® compatibility 10 = 10 Micron (AS,E, Z, and ZX media) $B = ISO 228 G-1\frac{1}{4}$ " = 25 Micron (E, Z and ZX media) 25

BOX 7

Options

30 = 30 psi bypass setting 50 = 50 psi bypass setting 60 = 60 psi bypass setting

75 = 75 psi bypass setting

Omit = None

25 = 25 psi bypass setting

NOTES:

Box 2. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. E media (cellulose) elements are only available with Buna N seals.

Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol® is a registered trademark of Solutia Inc.

Box 6. B porting option supplied with metric mounting holes.

Box 8. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified. BOX 8

BOX 6						
		Dirt Alarm® Options				
	Omit =	None				
Visual	D5 =	Visual pop-up				
Visual with Thermal Lockout	D8 =	Visual w/ thermal lockout				
Electrical	MS5LC = MS10 = MS10LC = MS11 = MS12 = MS12LC = MS16 = MS16LC =	Electrical w/ 12 in. 18 gauge 4-conductor cable Low current MS5 Electrical w/ DIN connector (male end only) Low current MS10 Electrical w/ 12 ft. 4-conductor wire Electrical w/ 5 pin Brad Harrison connector (male end only) Low current MS12 Electrical w/ weather-packed sealed connector Low current MS16 Electrical w/ 4 pin Brad Harrison male connector				
Electrical with Thermal Lockout	MS5T = MS5LCT = MS10T = MS10LCT = MS12T = MS12LCT = MS16T = MS16LCT = MS17LCT =	MS5 (see above) w/ thermal lockout Low current MS5T MS10 (see above) w/ thermal lockout Low current MS10T MS12 (see above) w/ thermal lockout Low current MS12T MS16 (see above) w/ thermal lockout Low current MS16T Low current MS16T				
Electrical Visual	MS14 =	Supplied w/ threaded connector & light Supplied w/ 5 pin Brad Harrison connector & light (male end)				
Electrical Visual with	MS13DCLCT =	MS13 (see above), direct current, w/ thermal lockout Low current MS13DCT MS14 (see above), direct current, w/ thermal lockout				
Thermal Lockout	MS14DCLCT =	Low current MS14DCT				

Features and Benefits

- Top-ported high pressure filter
- High cyclic fatigue performance (6000 psi)
- Available with non-bypass option with high collapse element
- Offered in pipe, SAE straight thread, flange and ISO 228 porting
- Thread on bowl with optional drain plug for easy element service

75 gpm 284 L/min 6000 psi 415 bar

Filter

Fluid

Housing **Specifications**

CTF60

KF50

KC50

KC65

Compatibility

20-CRZX10

Model No. of filter in photograph is CTF608CTZ10F20D9.

Flow Rating:	Up to 75 gpm (284 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	6000 psi (415 bar)
Min. Yield Pressure:	18,000 psi (1241 bar), per NFPA T2.6.1

Rated Fatigue Pressure: 6000 psi (415 bar), per NFPA T2.6.1-R1-2005

(only with F20 4-bolt flange porting)

Temp. Range: -20°F to 225°F (-29°C to 107°C)

Bypass Setting: Cracking: 50 psi (3.4 bar)

Full Flow: 83 psi (5.7 bar)

Non-bypassing model has a blocked bypass.

Porting Head: Ductile Iron Element Case: Steel

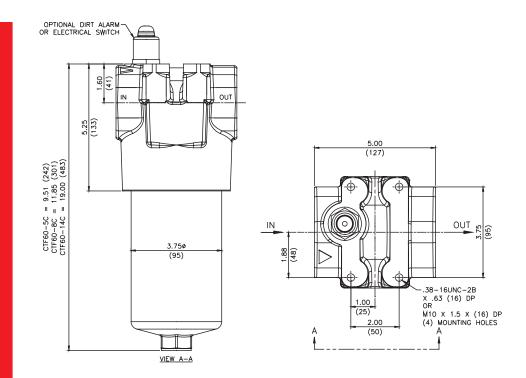
Weight of CTF60-5CT: 25 lbs. (11.4 kg)

CTF60-8CT: 29 lbs. (13.2 kg) CTF60-14CT: 38 lbs. (17.3 kg)

Element Change Clearance: 4.0" (103 mm)

Type Fluid Appropriate Schroeder Media

High Water Content All Z-Media® (synthetic)


Invert Emulsions 10 and 25 µ Z-Media® (synthetic)

Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation

CTF60

Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

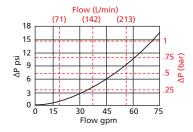
		tio Per ISO 4572/N article counter (APC) cali	Filtration Ration Using APC calibra	per ISO 16889 ted per ISO 11171	
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
CTZ1/CTZX1	<1.0	<1.0	<1.0	<4.0	4.2
CTZ3/CTZX3	<1.0	<1.0	<2.0	<4.0	4.8
CTZ5/CTZX5	2.5	3.0	4.0	4.8	6.3
CTZ10/CTZX10	7.4	8.2	10.0	8.0	10.0
CTZ25/CTZX25	18.0	20.0	22.5	19.0	24.0

Element Performance Information & Dirt Holding Capacity

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
5CTZ1	19	8CTZ1	31	14CTZ1	66
5CTZ3	16	8CTZ3	27	14CTZ3	57
5CTZ5	18	8CTZ5	30	14CTZ5	64
5CTZ10	21	8CTZ10	34	14CTZ10	72
5CTZ25	17	8CTZ25	28	14CTZ25	60
5CTZX1	14	8CTZX1	24	14CTZX1	53
5CTZX3	11	8CTZX3	18	14CTZX3	41
5CTZX5	10	8CTZX5	17	14CTZX5	38
5CTZX10	12	8CTZX10	20	14CTZX10	44
5CTZX25	11	8CTZX25	18	14CTZX25	39

Element Collapse Rating: 150 psid (10 bar) for standard elements

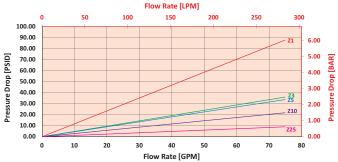
Flow Direction: 3000 psid (210 bar) for high collapse (ZX) versions

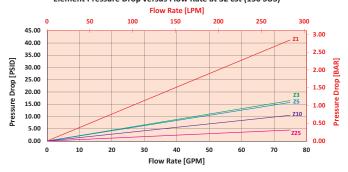

Outside In

Element Nominal Dimensions: 5CT: 2.64" (67 mm) O.D. x 4.88" (124 mm) long

8CT: 2.64" (67 mm) O.D. x 7.25" (184 mm) long 14CT: 2.64" (67 mm) O.D. x 14.38" (365 mm) long

 $\triangle \textbf{P}_{\text{housing}}$


CTF60 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle P_{element}$

8CTZ

14CTZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 50 gpm (189 L/min) for CTF608CTZ5S20D9 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 7 psi (.48 bar) on the graph for the CTF60 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 50 gpm. In this case, $\Delta P_{element}$ is 22 psi (1.5 bar) according to the graph for the 8CTZ5 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\Delta \mathbf{P}_{\text{housing}} = 7 \text{ psi } [.48 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 22 \text{ psi } [1.5 \text{ bar}]$

 $V_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$

$$\Delta P_{\text{filter}} = 7 \text{ psi} + (22 \text{ psi} * 1.3) = 35.6 \text{ psi}$$

 $\Delta P_{\text{filter}} = .48 \text{ bar} + (1.5 \text{ bar} * 1.3) = 2.4 \text{ bar}$

Pressure Drop **Information** Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	∆P	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
5CTZ1	1.87	5CTZX1	1.64	8CTZX1	1.00
5CTZ3	0.77	5CTZX3	0.96	8CTZX3	0.59
5CTZ5	0.72	5CTZX5	0.68	8CTZX5	0.41
5CTZ10	0.46	5CTZX10	0.46	8CTZX10	0.28
5CTZ25	0.19	5CTZX25	0.25	8CTZX25	0.15
14CTZX1	0.46	14CTZX3	0.27	14CTZX5	0.19
14CTZX10	0.13	14CTZX25	0.07		

CTF60 Top-Ported Pressure Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder CTF60:

BOX 1	BOX 2	BOX 3 BOX	4 BOX 5 BOX	BOX 7
CTF60		_]-[}

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	
CTF60	- 8 -	CTZ5		- S20 -		- D9	= CTF608CTZ5S20D9

BOX 4 BOX 1 BOX 2 BOX 3 **Element** Filter **Element Part Number Seal Material**

series	Length (in.)		
CTF60	5	CTZ1	= 1 μ Excellement® Z-Media® (synthetic)
	8	CTZ3	= 3 μ Excellement® Z-Media® (synthetic)
CTFN60	14	CTZ5	= 5 μ Excellement® Z-Media® (synthetic)
(Non- bypassing:		CTZ10	= 10 μ Excellement® Z-Media® (synthetic)
requires ZX high collapse		CTZ25	= 25 μ Excellement® Z-Media® (synthetic)
elements)		CTZX1	= 1 μ Excellement® Z-Media® (high collapse center tube)
		CTZX3	= 3 μ Excellement® Z-Media® (high collapse center tube)
		CTZX5	= 5 μ Excellement® Z-Media® (high collapse center tube)
		CTZX10	= 10 μ Excellement® Z-Media® (high collapse center tube)

BOX 5

Inlet Port

 $P20 = 1\frac{1}{4}$ " NPTF

S20 = SAE-20

 $F20 = 1\frac{1}{4}$ " SAE 4-bolt flange Code 62

B20 = ISO 228

G-11/4"

BOX 6

Options

Omit = None

UU = Series 1215 7/16" UNF Schroeder

> Check Test Points installed in the filter

head (upstream & downstream)

Electrical

Electrical

Thermal

Lockout

Visual with

Visual

DR = Drain on bowl

30 = 30 psi bypass setting

40 = 40 psi bypass setting

BOX 7

CTZX25 = 25 μ Excellement® Z-Media® (high collapse center tube)

Omit = Buna N V = Viton® H = EPR

	Dirt Alarm [®] Options
	Omit = None
Visual	D9 = Visual pop-up
	MS5SS = Electrical w/ 12 in. 18 gauge 4-conductor cable
	MS5SSLC = Low current MS5
	MS10SS = Electrical w/ DIN connector (male end only)
	MS10SSLC = Low current MS10
Electrical	MS11SS = Electrical w/ 12 ft. 4-conductor wire
Electrical	MS12SS= Electrical w/ 5 pin Brad Harrison connector (male end only)
	MS12SSLC = Low current MS12
	MS16SS = Electrical w/ weather-packed sealed connector
	MS16SSLC = Low current MS16
	MS17SSLC = Electrical w/ 4 pin Brad Harrison male connector
	MS5SST = MS5 (see above) w/ thermal lockout
	MS5SSLCT = Low current MS5T
	MS10SST = MS10 (see above) w/ thermal lockout
Electrical	MS10SSLCT = Low current MS10T
with Thermal	MS12SST = MS12 (see above) w/ thermal lockout
Lockout	MS12SSLCT = Low current MS12T
	MS16SST = MS16 (see above) w/ thermal lockout
	MS16SSLCT = Low current MS16T
	MS17SSLCT = Low current MS17T

MS13DC = Supplied w/ threaded connector & light

MS13SSDCLCT = Low current MS13DCT

MS14SSDCLCT = Low current MS14DCT

MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end)

MS13SSDCT = MS13 (see above), direct current, w/ thermal lockout

MS14SSDCT = MS14 (see above), direct current, w/ thermal lockout

NOTES:

Box 2. Replacement element part numbers are identical to contents of Boxes 2, 3 and 4.

Box 4. Viton® is a registered trademark of DuPont Dow Elastomers.

Box 5. B porting option supplied with metric mounting holes.

Box 7. All Dirt Alarm® Indicators must be Stainless Steel. Standard indicator setting is 50 psi. For replacement indicators, contact the factory.

Features and Benefits

- Top-ported high pressure filter
- Threaded bowl for easy element servicing
- Offered in pipe, SAE straight thread and ISO 228 porting
- Various dirt alarm options available

70 gpm 265 L/min 6000 psi 415 bar

VF60

KF30

KF50

KC50

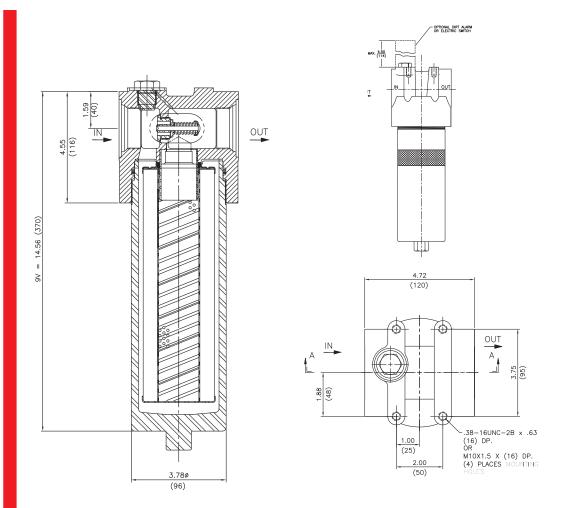
KC65

Fluid	
Compatibility	,

Filter Housing **Specifications**

NOF-50-760

Flow Rating:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	6000 psi (415 bar)
Min. Yield Pressure:	15,500 psi (1070 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	3300 psi (230 bar), per NFPA T2.6.1-R1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 50 psi (3.5 bar) Full Flow: 65 psi (4.5 bar)
Porting Head: Element Case:	Ductile Iron Steel
Weight of VF60-9V:	24.0 lbs. (10.9 kg)
Element Change Clearance:	4.0" (103 mm)


Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All E-Media (cellulose) and Z-Media® (synthetic)

High Water Content All Z-Media® (synthetic)

Invert Emulsions 10 and 25 µ Z-Media® (synthetic) Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation

Skydrol[®] 3, 5, 10 and 25 µ Z-Media[®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				o per ISO 16889 Ited per ISO 11171
Element	β _x ≥ 75	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
9VZ1	<1.0	<1.0	<1.0	<4.0	4.2
9VZ3	<1.0	<1.0	<2.0	<4.0	4.8
9VZ5	2.5	3.0	4.0	4.8	6.3
9VZ10	7.4	8.2	10.0	8.0	10.0
9VZ25	18.0	20.0	22.5	19.0	24.0

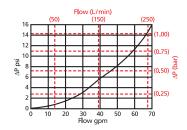
Element	DHC (gm)	
9VZ1	55	
9VZ3	57	
9VZ5	62	
9VZ10	60	
9VZ25	61	

150 psid (10 bar) for standard elements Element Collapse Rating:

> Flow Direction: Outside In

Element Nominal 9V: 2.9" (75 mm) O.D. x 9.5" (240 mm) long

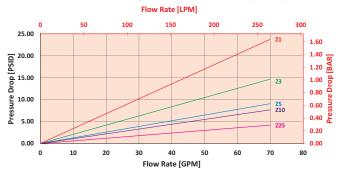
Dimensions:


Pressure

Information Based on Flow Rate and Viscosity

Drop

 $\triangle \textbf{P}_{\text{housing}}$


VF60 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle P_{element}$

9VZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 40 gpm (151 L/min) for VF609VZ1S using 120 SUS (25.5 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 40 gpm. In this case, $\Delta P_{\text{housing}}$ is 6 psi (.42 bar) on the graph for the VF60 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 40 gpm. In this case, $\Delta P_{element}$ is 13 psi (.90 bar) according to the graph for the 9VZ1 element.

Because the viscosity in this sample is 120 SUS (25.5 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\Delta \mathbf{P}_{\text{housing}} = 6 \text{ psi } [.42 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 13 \text{ psi } [.90 \text{ bar}]$

 $V_f = 120 \text{ SUS } (25.5 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .80$

 $\Delta P_{\text{filter}} = 6 \text{ psi} + (13 \text{ psi} * .80) = 16.4 \text{ psi}$

 $\Delta P_{\text{filter}} = .42 \text{ bar} + (..90 \text{ bar} * .80) = 1.14 \text{ bar}$

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = Flow Rate \times \Delta \mathbf{P}_f Plug$ this variable into the overall pressure drop equation.

Ele.	∆P
9V3	0.32
9V10	0.24

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder VF60:

BOX 1	BOX 2 BOX 3 BOX 4	BOX 5 BOX
VF60 -]-[

BOX 1 BO	X 2 BOX 3	BOX 4 BOX 5	BOX 6	
VF60 - 9) – VZ1			= VF609VZ1S

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Element Length (in)	Element Size and Media	Seal Material
VF60	9	V3 = V size 3 μ E media (cellulose) V10 = V size 10 μ E media (cellulose) VZ1 = V size 1 μ Excellement® Z-Media® (synthetic) VZ3 = V size 3 μ Excellement® Z-Media® (synthetic) VZ5 = V size 5 μ Excellement® Z-Media® (synthetic) VZ10 = V size 10 μ Excellement® Z-Media® (synthetic) VZ25 = V size 25 μ Excellement® Z-Media® (synthetic) VZ10 = V size 150 μ M media (reusable metal)	Omit = Buna N V = Viton® H = EPR

BOX 5 BOX 6

Inlet Port
P = 11/4" NPTF
S = SAE-20
B = ISO 228 G-11/4"

	Dirt Alarm [®] Options				
	Omit = None				
Visual	D5 = Visual pop-up				
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout				
Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector				
Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS16T				
Electrical Visual	MS13DC = Supplied w/ threaded connector & light MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end)				
Electrical Visual with Thermal Lockout	MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT				

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4.
- Box 2. Example: 9VZ1V synthetic media elements are only available with Viton seals.
- Box 4. Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 5. B porting option supplied with metric mounting holes.

High-Flow, High Pressure Filter LW60

300 gpm 1135 L/min 6000 psi 415 bar

LW60

KF50

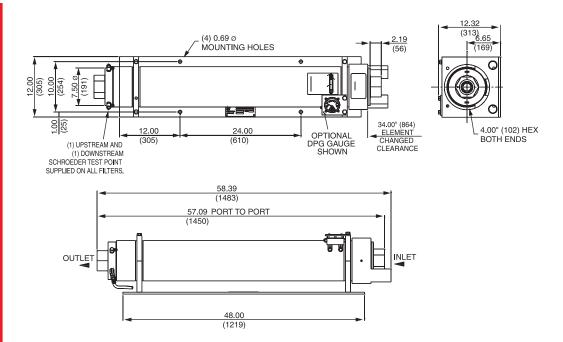
Filter Housing **Specifications**

Fluid

Compatibility

KC65

Flow Rating: Up to 300 gpm (1135 L/min) for use with 95/5 fluids Max. Operating Pressure: 6000 psi (414 bar) Min. Yield Pressure: 18,000 psi (1240 bar), per NFPA T2.6.1 Rated Fatigue Pressure: 4500 psi (310 bar), per NFPA T2.6.1 -20°F to 225°F (-29°C to 107°C) Temp. Range: Bypass Setting: Cracking: 50 psi (3.4 bar) LWN60 non-bypassing model available with high crush element Porting Cap: Steel Housing: Steel 550 lb. (250 kg) Weight:


Type Fluid Appropriate Schroeder Media

Element Change Clearance:

95/5 fluids Specifically designed for use with 95/5 fluids applications

34.0" (864 mm)

High-Flow, High Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	$\beta_{x}(c) \geq 1000$	
39ZPZ3V	5.1	
39ZPZ5V	6.1	
39ZPZ10V	12.1	
397P725\/	17 7	

Element	DHC (gm)	
39ZPZ3V	449	
39ZPZ5V	359	
39ZPZ10V	429	
39ZPZ25V	284	

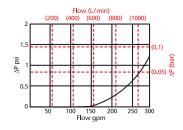
Element Collapse Rating: 150 psid (10 bar)
Flow Direction: Outside In

Element Nominal 5.0" (127 mm) O.D. x 38.0" (965 mm) long

Dimensions:

High-Flow, High Pressure Filter LW60

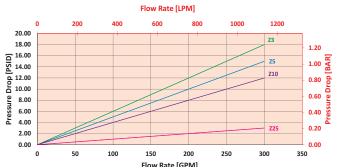
Pressure


Information

Drop

Based on Flow Rate and Viscosity

 $\triangle \textbf{P}_{\text{housing}}$


LW60 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle P_{element}$

39ZPZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 200 gpm (757 L/min) for LW6039ZPZ3VB32DPG using 75 SUS (16 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is .25 psi (.02 bar) on the graph for the LW60 housing.

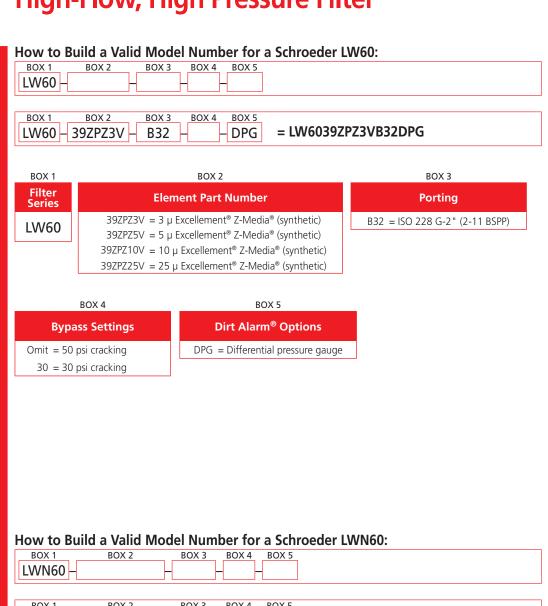
Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 200 gpm. In this case, $\Delta P_{\text{element}}$ is 12 psi (.83 bar) according to the graph for the 39ZPZ3 element.

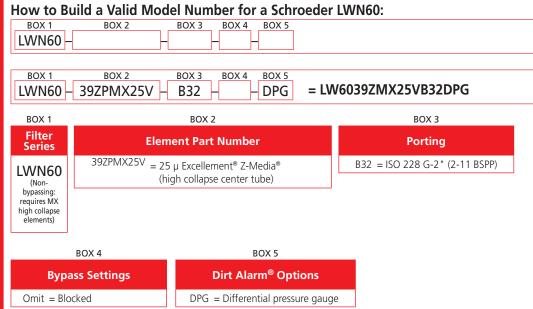
Because the viscosity in this sample is 75 SUS (16 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\Delta \mathbf{P}_{\text{housing}} = .25 \text{ psi } [.02 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 12 \text{ psi } [.83 \text{ bar}]$

 $V_f = 75 \text{ SUS } (16 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .50$


$$\Delta P_{\text{filter}} = .25 \text{ psi} + (12 \text{ psi} * .50) = 6.25 \text{ psi}$$


 $\Delta P_{\text{filter}} = .02 \text{ bar} + (.83 \text{ bar} * .50) = .44 \text{ bar}$

High-Flow, High Pressure Filter

Filter Model Number Selection

KF30/KF50

100/150 gpm

380/570 L/min

KF30- 3000 psi

KF50- 5000 psi

210 bar

345 bar

Features and Benefits

- Base-ported pressure filter
- Can be installed in vertical or horizontal position
- Meets HF4 automotive standard
- Element changeout from top minimizes oil spillage
- Offered in pipe, SAE straight thread, flanged and ISO 228 porting
- No-Element indicator option available
- Available with non-bypass option with high collapse element
- Integral inlet and outlet female test points option available
- Offered in conventional subplate porting
- Same day shipment model available
- Double and triple stacking of K-size elements can be replaced by single KK or 27K-size elements
- G Available with quality-protected GeoSeal® Elements (GKF30/GKF50)

Model No. of filter in photograph is KF30/KF501K10SD.

Type Fluid

Skydrol®

Filter Housing

Specifications

Flow Rating: Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids With 2" porting only, up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure: KF30- 3000 psi (210 bar) KF50- 5000 psi (345 bar)
Min. Yield Pressure: KF30- 12,000 psi (830 bar), per NFPA T2.6.1 KF50- 15,000 psi (1025 bar), per NFPA T2.6.1
Rated Fatigue Pressure: KF30- 2500 psi (170 bar), per NFPA T2.6.1-2005 KF50- 3500 psi (240 bar), per NFPA T2.6.1-2005
Temp. Range: -20°F to 225°F (-29°C to 107°C)
Bypass Setting: Cracking: 40 psi (2.8 bar) Full Flow: 61 psi (4.2 bar) Non-bypassing model has a blocked bypass.
Porting Base & Cap: Ductile Iron Element Case: Steel
Weight of KF30-1K: 48 lbs. (22 kg) Weight of KF30-2K: 65 lbs. (30 kg) Weight of KF30-3K: 81 lbs. (37 kg) Weight of KF50-1K: 59.7 lbs. (27.1 kg) Weight of KF50-2K: 80.7 lbs. (36.6 kg) Weight of KF50-3K: 102.0 lbs. (46.3 kg)
Element Change Clearance: 8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K

Fluid Compatibility

Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® Media (synthetic) **High Water Content** All Z-Media® and ASP® Media (synthetic) **Invert Emulsions** 10 and 25 μ Z-Media® (synthetic), 10 μ ASP® Media Water Glycols 3, 5, 10 and 25 µ Z-Media® (synthetic) and all ASP® Media All Z-Media® and ASP® Media (synthetic) with H (EPR) seal designation and 3 **Phosphate Esters** and 10 µ E media (cellulose) with H (EPR) seal designation

3, 5, 10 and 25 µ Z-Media® (synthetic) and all ASP® Media (synthetic) with H.5

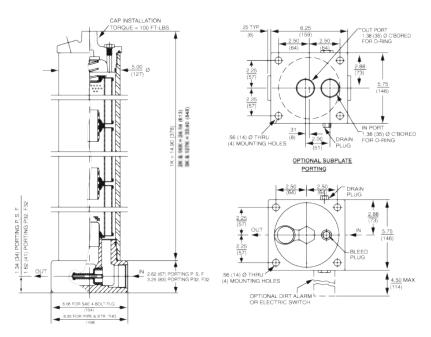
seal designation (EPR seals and stainless steel wire mesh in element, and light

Appropriate Schroeder Media

oil coating on housing exterior)

SCHROEDER INDUSTRIES 99

20-CRZX10


KF30

KF50

KC65

KF30/KF50

Base-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

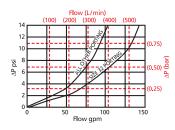
	ISO Using au	iltration Rat 4572/NFPA Itomated particle calibrated per ISO	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	β _{x} ≥ 75	$\beta_{\mathbf{X}} \ge 100$	$\beta_{\boldsymbol{X}} \geq 200$	β _χ (c) ≥ 200	β _χ (c) ≥ 1000
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5
KZX3/KKZX3/27KZX3	<1.0	<1.0	<2.0	4.7	5.8
KZX10/KKZX10/27KZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61			
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128	
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126	
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114	
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158	
KZX3	81*	KKZX3	163*	27KZX3	249*					
KZX10	90*	KKZX10	182*	27KZX10	279*	* Based on 100 psi terminal pressure				

Element Collapse Rating: 150 psid (10 bar) for standard elements

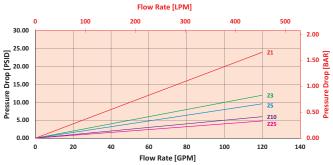
3000 psid (210 bar) for high collapse (ZX) versions

Flow Direction: Outside In

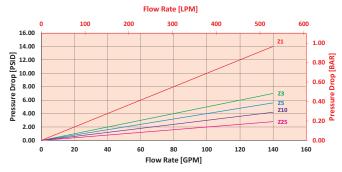

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Base-Ported Pressure Filter KF30/KF5


 $\triangle \textbf{P}_{\text{housing}}$

KF30/KF50 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle P_{element}$

KZ/KGZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

KKZ/KKGZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$

Exercise:

Determine ΔP_{filter} at 50 gpm (189.5 L/min) for KF301KZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the KF30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 50 gpm. In this case, $\Delta P_{\text{element}}$ is 2.5 psi (.17 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta \dot{\mathbf{P}}_{\text{element}}^* \vee_f$). The $\Delta \dot{\mathbf{P}}_{\text{element}}^*$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 2.5 \text{ psi } [.17 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta \mathbf{P}_{\text{filter}} = 3 \text{ psi} + (2.5 \text{ psi} * 1.1) = 5.8 \text{ psi}$$

 $\Delta P_{\text{filter}} = .21 \text{ bar} + (.17 \text{ bar} * 1.1) = .40 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	80.0
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KAS25/ 27KAS25	0.07

F30/KF50 Base-Ported Pressure Filter

BOX 4 BOX 5

Filter Model Number Selection

Highlighted product eligible for QuickDelivery

NOTES:

- Box 2. Number of elements must equal 1 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length. For standard elements, a plastic connector SAP P/N: 7630900(LF-1997) is used to connect two or three K elements. For high collapse, a steel connector is required SAP P/N: 7608360 (LF-3255C).
- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 7. For options F & F32, bolt depth .75" (19 mm).

For option O, O-rings included; hardware not included.

- Box 8. X and 50 options are not available with KFN30 or KFN50.
- Box 9. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.
- Box 10. Options N, are not available with KFN30, KFN50. N option should be used in conjunction with dirt alarm.

How to Build a Valid Model Number for a Schroeder KF30:

KF30 **Example:** NOTE: Only boxes 8 and 10 may contain more than one option BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 9 **BOX 10** GKF30- KG -Z – 10 S D5 = GKF30Z10SD5

BOX 6 BOX 7

BOX 1 BOX 2 Filter **Number & Size of Elements** Series 1 = K, KK, 27KKF30

2 = KKFN30 3 = K(Nonbypassing: requires ZX

high collapse elements) GKF30 (GeoSeal®)

KF50

BOX 1

KFN50 (Nonbypassing: requires ZX high collapse elements)

GKF50

(GeoSeal®)

260

GeoSeal® Options

1 = KG, KKG, 27KKG 2 = KG3 = KG

BOX 3 Media Type

Omit = E Media (Cellulose) AS = Anti-Stat Media (synthetic) Z = Excellement[®] Z-Media[®] (synthetic)

BOX 8

Aqua-Excellement® ZW Media

ZX = Excellement[®] Z-Media[®] (High Collapse centertube) W = W Media (water removal)

Media (reusable metal mesh) N size only

BOX 4 BOX 5 BOX 6

Micron Rating = 1 Micron (Z, ZW, ZX media) = 3 Micron (AS,E, Z, ZW, ZX media) 3 = 5 Micron (AS 7 7W 7X media) (AS,E,M, Z, ZW, ZX media) 10 = 10 Micron 25 = 25 Micron (E, M, Z, ZW, ZX media) 60 = 60 Micron (M media) = 150 Micron (M media) 150

= 260 Micron (M media)

Seal Material Magnet Option Omit = None Omit = Buna N V = Viton®

H = FPR= Skydrol® compatibility

M = Magnet inserts (not available w/ indicator in cap)

BOX 7 **Porting**

P = 1 ½" NPTF

P32 = 2" NPTF S = SAE-24F = 1 1/2" SAE 4-bolt flange (KF30 Code 61) (KF50 Code 62)

F32 = 2" SAE 4-bolt flange Code 61(KF30) *KF30 Only

O = Subplate B24 = ISO 228G-1 ½"

BOX 10

BOX 9 BOX 8 **Options** Dirt Alarm® Options Omit = None Omit = None X = Blocked bypass D = Pointer D5 = Visual pop-up 50 = 50 psi bypassVisual D5C = D5 in capsetting D9 = All stainless D5 L = Two 1/4" NPTF inlet D8 = Visual w/ thermal lockout Visual & outlet female with test ports Thermal D8C = D8 in capU = Series 1215 1/16 Lockout **UNF Schroeder** MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable Check Test Point MS5LC = Low current MS5 installed in cap MS10 = Electrical w/ DIN connector (male end only) (upstream) MS10LC = Low current MS10 UU = Series 1215 7/16 MS11 = Electrical w/ 12 ft. 4-conductor wire Electrical UNF Schroeder MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) Check Test Point MS12LC = Low current MS12 installed in block MS16 = Electrical w/ weather-packed sealed connector (upstream and MS16LC = Low current MS16 downstream) MS17LC = Electrical w/ 4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T

MS10T = MS10 (see above) w/ thermal lockout Electrical MS10LCT = Low current MS10T with MS12T = MS12 (see above) w/ thermal lockout Thermal MS12LCT = Low current MS12TLockout MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T $MS = Cam operated switch w <math>\frac{1}{2}$ conduit female connection Electrical MS13DC = Supplied w/ threaded connector & light Visual MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end)

MS13DCLCT = Low current MS13DCT

MS14DCLCT = Low current MS14DCT

MS13DCT = MS13 (see above), direct current, w/ thermal lockout

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

Additional **Options**

Omit = None N = No-Flement Indicator (not available w/ KEN30/KEN50/ GKF30/GKF50 or housings w/ indicator in cap)

> C = Electrical indicator in cap vs. in base standard

G509 = Dirt Alarm and drain opposite standard

G588 = Electric Switch and drain opposite standard

Electrical

Thermal

Lockout

Visual

with

Features and Benefits

- Base-ported pressure filter
- Can be installed in vertical or horizontal position
- Element changeout from top minimizes oil spillage
- Offered in pipe, SAE straight thread, flanged and ISO 228 porting
- Available with non-bypass option with high collapse element
- Integral inlet and outlet female test
- Offered in conventional subplate porting

40 gpm 150 L/min 5000 psi 345 bar

TF50

Filter Housing **Specifications** **KC50**

KC65

Fluid	NO
Compatibility	OF-
	FO

20-CRZX10

points option available

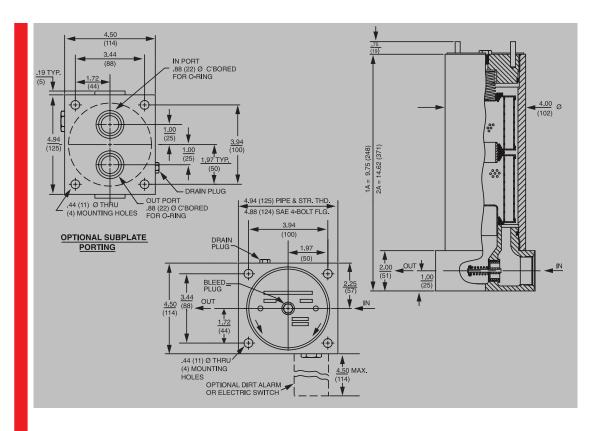
Model No. of filter in photograph is TF502A10P.

Flow Rating: Up to 40 gpm (150 L/min) for 150 SUS (32 cSt) fluids Max. Operating Pressure: 5000 psi (345 bar) Min. Yield Pressure: 15,000 psi (1035 bar), per NFPA T2.6.1 Rated Fatigue Pressure: 3500 psi (240 bar), per NFPA T2.6.1-2005 **Temp. Range:** -20°F to 225°F (-29°C to 107°C) Bypass Setting: Cracking: 40 psi (2.8 bar) Full Flow: 69 psi (4.8 bar) Non-bypassing model has a blocked bypass. Porting Base: Ductile Iron Element Case & Cap: Steel Weight of TF50-1A: 24.4 lbs. (11.1 kg) Weight of TF50-2A: 29.8 lbs. (13.5 kg)

Type Fluid Appropriate Schroeder Media Petroleum Based All E media (cellulose) and Z-Media® (synthetic)

Invert Emulsions

Water Glycols


Element Change Clearance: 8.50" (215 mm)

Fluids High Water Content All Z-Media® (synthetic)

> 10 and 25 μ Z-Media® (synthetic) 3, 5, 10 and 25 µ Z-Media® (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation Skydrol®

3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

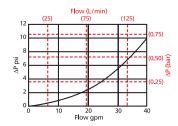
Element Performance Information & Dirt Holding Capacity Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

		tio Per ISO 4572/N article counter (APC) cali		per ISO 16889 ted per ISO 11171	
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
AZ1	<1.0	<1.0	<1.0	<4.0	4.2
AZ3	<1.0	<1.0	<2.0	<4.0	4.8
AZ5	2.5	3.0	4.0	4.8	6.3
AZ10	7.4	8.2	10.0	8.0	10.0
AZ25	18.0	20.0	22.5	19.0	24.0
CCZX3	<1.0	<1.0	<2.0	4.7	5.8
CCZX10	7.4	8.2	10.0	8.0	10.0
Element	DHC (gm)				

Element	DHC (gm)	
AZ1	25	
AZ3	26	
AZ5	30	
AZ10	28	
AZ25	28	
CCZX3	26*	
CCZX10	28*	

Element Collapse Rating: 150 psid (10 bar) for standard elements

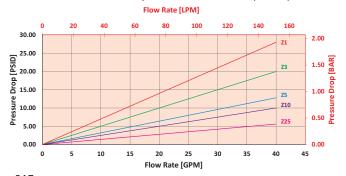
3000 psid (210 bar) for high collapse (ZX) versions

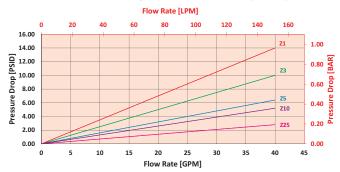

Flow Direction: Outside In * Based on 100 psi terminal pressure

Element Nominal Dimensions: A: 3.0" (75 mm) O.D. x 4.5" (115 mm) long CC: 3.0" (75 mm) O.D. x 9.5" (240 mm) long

TF50

 $\triangle \mathbf{P}_{\text{housing}}$


TF50 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle P_{element}$

1AZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2AZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$$

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for TF501AZ10SD5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.8 psi (.12 bar) on the graph for the TF50 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 3.8 psi (.26 bar) according to the graph for the AZ10 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\Delta \mathbf{P}_{\text{housing}} = 1.8 \text{ psi } [.12 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3.8 \text{ psi } [.26 \text{ bar}]$

 $V_f = 175 \text{ SUS } (37.2 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.2$

$$\Delta \mathbf{P}_{\text{filter}} = 1.8 \text{ psi} + (3.8 \text{ psi} * 1.2) = 6.4 \text{ psi}$$

<u>OR</u>

 $\Delta P_{\text{filter}} = .12 \text{ bar} + (.26 \text{ bar} * 1.2) = .43 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate } \mathbf{x} \ \Delta \mathbf{P}_f \ \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
A3	0.53	AA3	0.16
A10	0.36	AA10	0.18
A25	0.05	AA25	0.03
CCZX3	0.29		
CCZX10	0.26		

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder TF50:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9
TF50	-		-	-		-	_	-

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	
TF50 -	- 1 -	AZ5			- S -		D5 -	-	= TF501AZ5SD5

BOX 1 **Filter** Series

TF50

TFN50 (Nonbypassing: requires ZX high collapse

elements)

BOX 2 Number 1 2

(AZ elements only)

Media Type AZ1 = 1 μ Excellement[®] Z-Media[®] (synthetic)

AZ3 = 3 µ Excellement[®] Z-Media[®] (synthetic) AZ5 = 5 µ Excellement[®] Z-Media[®] (synthetic) AZ10 = 10 µ Excellement[®] Z-Media[®] (synthetic) AZ25 = 25 µ Excellement[®] Z-Media[®] (synthetic)

CCZX1 = 1 μ Excellement[®] Z-Media[®] (high collapse center tube)

CCZX3 = 3μ Excellement[®] Z-Media[®] (high collapse center tube) CCZX10 = 10 µ Excellement® Z-Media® (high collapse center tube)

BOX 3

BOX 4

= Viton®

= Skydrol®

compatibility

= EPR

Omit = Buna N

Seal Material

Magnet option Omit = None

BOX 5

M = Magnet inserts (not available w/ indicator in cap or TFN50)

BOX 6 **Porting**

P = 1" NPTF S = SAE-16

Electrical

Electrical

F = 1" SAE 4-bolt flange Code 61 O = Subplate B = ISO 228 G-1

BOX 7

Options

Omit = None

X = Blocked bypass

25 = 25 psi bypass setting

30 = 30 psi bypass setting

50 = 50 psi bypass setting

60 = 60 psi bypass setting

= 75 psi bypass setting

= Two ¹/4" NPTF inlet and outlet female test ports

= Series 1215 7/16 UNF Schroeder Check Test Point installation in cap (upstream)

= Series 1215 ⁷/₁₆ UNF Schroeder Check Test Point installation in block (upstream and downstream)

BOX 8

Dirt Alarm® Options None Omit = None D = Pointer

D5 = Visual pop-up Visual D5C = D5 in cap

D9 = All stainless D5 D8 = Visual w/ thermal lockout Visual with

Thermal D8C = D8 in capLockout

> MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5

MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10

MS11 = Electrical w/ 12 ft. 4-conductor wire

MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12

MS16 = Electrical w/ weather-packed sealed connector

MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector

MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T

MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T

with MS12T = MS12 (see above) w/ thermal lockout Thermal MS12LCT = Low current MS12T Lockout

MS16T = MS16 (see above) w/ thermal lockout

MS16LCT = Low current MS16TMS17LCT = Low current MS17T

 $MS = Cam operated switch w <math>\frac{1}{2}$ conduit female connection Electrical MS13 = Supplied w/ threaded connector & light Visual MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end) MS13DCT = MS13 (see above), direct current, w/ thermal lockout Electrical

Visual with MS13DCLCT = Low current MS13DCT Thermal MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT

BOX 9

Additional Options

= No-Element indicator (not available with Ν

G509 = Dirt alarm and drain opposite standard

G588 = Electrical switch and drain opposite standard

Max. Operating Pressure: 5000 psi (345 bar)

Porting Base & Cap: Ductile Iron Element Case: Steel Weight of KF30-1K: 66.8 lbs. (30.3 kg) Weight of KF30-2K: 87.8 lbs. (39.8 kg) Weight of KF30-3K: 109.6 lbs. (49.7 kg)

Features and Benefits

- Base-ported pressure filter
- Patented dirt-tolerant cap design
- Can be installed in vertical or horizontal position
- Meets HF4 automotive standard
- Element changeout from top minimizes oil spillage
- Ofered in pipe, SAE straight thread, flanged and ISO 228 porting
- No-Element indicator option available
- Available with non-bypass option with high collapse element
- Integral inlet and outlet female test points option available
- Offered in conventional subplate porting
- Double and triple stacking of K-size elements can be replaced by single KK or 27K-size elements
- Available with quality-protected GeoSeal® Elements (GKC50)

100/150 gpm 380/570 L/min^{NFS30} 5000 psi 345 bar

Filter Housing **Specifications**

KC50

KC65

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E-Media (cellulose) and Z-Media® and ASP® Media (synthetic)

High Water Content All Z-Media® and ASP® Media (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic), 10 μ ASP® Media (synthetic)

Flow Rating: Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids

for 150 SUS (32 cSt) fluids

Full Flow: 61 psi (4.2 bar)

Min. Yield Pressure: 15,000 psi (1035 bar), per NFPA T2.6.1 Rated Fatigue Pressure: 3500 psi (240 bar), per NFPA T2.6.1-2005

Temp. Range: -20°F to 225°F (-29°C to 107°C)

With 2" porting only, up to 150 gpm (570 L/min)

Bypass Setting: Cracking: 40 psi (2.8 bar) Optional Cracking: 50 psi (3.5 bar)

Non-bypassing model has a blocked bypass.

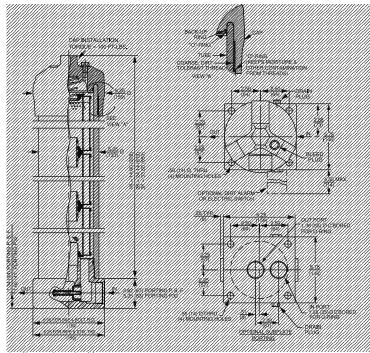
Element Change Clearance: 8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K

Water Glycols 3, 5, 10 and 25 µ Z-Media® (synthetic), and all ASP® Media

Phosphate Esters All Z-Media® and ASP® Media (synthetic) with H (EPR) seal designation and 3 and 10 µ

E media (cellulose) with H (EPR) seal designation

3, 5, 10 and 25 μ Z-Media® (synthetic), and all ASP® Media (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating


on housing exterior)

Fluid Compatibility

20-CRZX10

SCHROEDER INDUSTRIES 107

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

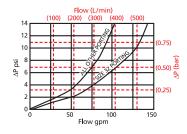
Element Performance Information & Dirt Holding Capacity

	ISO Using au	iltration Rat 4572/NFPA Itomated particle calibrated per ISO	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _X ≥ 75	$\beta_{\boldsymbol{X}} \ge 100$	$\beta_{\boldsymbol{X}} \geq 200$	β _X (c) ≥ 200	β _{X} (c) ≥ 1000
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5
KZX3/KKZX3/27KZX3	<1.0	<1.0	<2.0	4.7	5.8
KZX10/KKZX10/27KZX10	7.4	8.2	10.0	8.0	9.8

	DHC		DHC		DHC		DHC		DHC
Element	(gm)	Element	(gm)	Element	(gm)	Element	(gm)	Element	(gm)
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158
KZX3	81*	KKZX3	163*	27KZX3	249*				
KZX10	90*	KKZX10	182*	27KZX10	279*	* Based on 100 psi terminal pressur			

Element Collapse Rating: 150 psid (10 bar) for standard elements

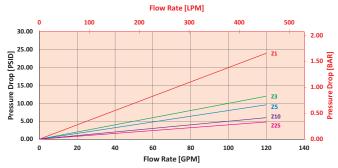
3000 psid (210 bar) for high collapse (ZX) versions

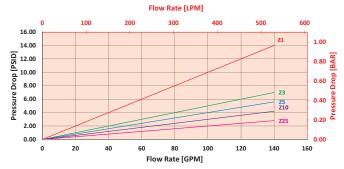

Flow Direction: Outside In

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

 $\triangle \textbf{P}_{\text{housing}}$


KC50 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle P_{element}$

KZ/KGZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2KZ/KKGZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 50 gpm (189.5 L/min) for KC501KZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the KC50 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 50 gpm. In this case, $\Delta P_{\text{element}}$ is 2.5 psi (.17 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\triangle P_{\text{element}} * V_f$). The $\triangle P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 2.5 \text{ psi } [.17 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta \mathbf{P}_{\text{filter}} = 3 \text{ psi} + (2.5 \text{ psi} * 1.1) = 5.8 \text{ psi}$$

 $\Delta P_{\text{filter}} = .21 \text{ bar} + (.17 \text{ bar} * 1.1) = .40 \text{ bar}$

Pressure Drop **Information** Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	80.0
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KAS25/ 27KAS25	0.07

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder KC50:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10
KC50		-							

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10	
KC50 -	1K –	Z	– 10 –	-	_	- S -	_	_ D5 -	_	= KC501KZ10SD5

BOX 2 BOX 1 Number & Size of **Filter** Media Type Series Elements Omit = E Media (Cellulose) (KC50 only) KC50 K, KK, 27K 2 Κ AS = Anti-Stat Media (synthetic) KCN50 3 Κ (Nonbypassing:

Excellement® Z-Media® (synthetic) GeoSeal® Options ZX = Excellement[®] Z-Media[®] (High Collapse centertube) (KCN50 Only) KG, KKG, 27KG ZW = Aqua-Excellement ZW Media (KC50 Only) 2 KG W = W Media (water removal) 3 KG M = Media (reusable metal mesh) (KC50 & KCN50 Only)

elements) GKC50 (GeoSeal®)

requires

ZX high

collapse

WKC50 (Water)

BOX 4 BOX 5 BOX 6

V = Viton®

H.5 = Skydrol®

compatibility

H = FPR

Micron Rating = 1 Micron (Z, ZW, ZX media) (AS,E, Z, ZW, ZX media) = 3 Micron (AS, Z, ZW, ZX media) = 5 Micron 10 = 10 Micron (AS,E,M, Z, ZW, ZX media) 25 = 25 Micron (E,M, Z, ZW, ZX media) 60 = 60 Micron (M media)

150 = 150 Micron (M media) = 260 Micron (M media) 260

Seal Material Magnet Option Omit = Buna N Omit = None

BOX 3

M = Magnet inserts (not available w/ indicator in cap)

P = 1 ½" NPTF P32 = 2" NPTF S = SAE-24F = 1 ½" SAE 4-holt flange Code 62 O = Subplate B24 = ISO 228G-1 ½

BOX 7

Porting

BOX 8 BOX 9 **BOX 10 Additional** Options

Omit	= None
Х	= Blocked bypass
50	= 50 psi bypass setting

L = Two 1/4" NPTF inlet & outlet female test ports

U = Series 1215 7/16 **UNF** Schroeder Check Test Point installed in cap (upstream)

UU = Series 1215 7/6 **UNF** Schroeder Check Test Point installed in block (upstream and downstream)

	Dir	t Alarm [®] Options
None	Omit =	None
	D =	Pointer
Visual	D5 =	Visual pop-up
VISUal	D5C =	D5 in cap
	D9 =	All stainless D5
Visual with	D8 =	Visual w/ thermal lockout
Thermal Lockout	D8C =	D8 in cap
	MS5 =	Electrical w/ 12 in. 18 gauge 4-conductor cable
	MS5LC =	Low current MS5
	MS10 =	Electrical w/ DIN connector (male end only)
	MS10LC =	Low current MS10
Electrical	MS11 =	Electrical w/ 12 ft. 4-conductor wire
Electrical	MS12 =	Electrical w/ 5 pin Brad Harrison connector (male end only)
	MS12LC =	Low current MS12
		Electrical w/ weather-packed sealed connector
		Low current MS16
	MS17LC =	Electrical w/ 4 pin Brad Harrison male connector
	MS5T =	MS5 (see above) w/ thermal lockout
	MS5LCT =	Low current MS5T
Electrical	MS10T =	MS10 (see above) w/ thermal lockout
Electrical	MS10LCT =	Low current MS10T

MS10LCT = Low current MS10T

MS12LCT = Low current MS12T

MS16LCT = Low current MS16T

MS17LCT = Low current MS17T

MS13DCLCT = Low current MS13DCT

MS14DCLCT = Low current MS14DCT

connection

MS =

 $MS14DC = \frac{\text{Supp}}{\text{end}}$

MS12T = MS12 (see above) w/ thermal lockout

MS16T = MS16 (see above) w/ thermal lockout

MS13DC= Supplied w/ threaded connector & light

Cam operated switch w/ ½" conduit female

MS13DCT = MS13 (see above), direct current, w/ thermal lockout

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

Supplied w/ 5 pin Brad Harrison connector & light (male

with

Thermal

Lockout

Electrical

Electrical

Thermal

Lockout

Visual with

Visual

Omit = None N = No-Element Indicator (not available w/ KCN50 or GKC50 housings w/ indicator in cap) G509 = Dirt Alarm and drain opposite standard G588 = Electric Switch and drain

opposite

standard

Options

Box 7. For option F, bolt depth .75" (19 mm). For option O, O-rings included; hardware not included.

NOTES:

Box 2. Number of elements

must equal 1 when

elements, Replacement

element part numbers

of Boxes 2, 3, 4 and 5.

replaced by single KK and 27K elements,

respectively. ZW media not available in 27K length. For standard

elements, a plastic

connector SAP P/N:

7630900 (LF-1997) is used to connect two or

three K elements. For high collapse, a steel

connector is required

following: EPR seals,

stainless steel wire mesh

on elements, and light

oil coating on housing

registered trademark of

DuPont Dow Elastomers.

trademark of Solutia Inc.

Skydrol® is a registered

exterior. Viton® is a

SAP P/N: 7608360

(LF-3255C).

Box 5. H.5 seal designation

includes the

Double and triple

stacking of K-size

elements can be

are identical to contents

using KK or 27K

Box 8. X and 50 options are not available with KCN50.

Box 9. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.

Box 10. Option N, are not available with KCN50/ GKC50. N option should be used in conjunction with dirt alarm.

Features and Benefits

- Base-ported high pressure dual filter manifold mounted
- Meets HF4 automotive standard
- Element changeout from top minimizes oil spillage
- Offered in pipe porting (contact factory for other porting options)
- No-Element indicator option available
- Available with non-bypass option with high collapse element
- Integral inlet and outlet female test points option available
- Double and triple stacking of K-size elements can be replaced by single KK or 27K-size elements
- **G** Available with quality-protected GeoSeal® Elements (GMKF50)

200 gpm 760 Ľ/min 5000 psi 345 bar

Filter Housing

Specifications

KC50

MKF50

MKC50

Fluid Compatibility

20-CRZX10

Model No. of filter in photograph are MKF504K10PD5 and MKC504K10PD5.

Flow Rating:	Up to 200 gpm (760 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	5000 psi (345 bar)
Min. Yield Pressure:	15,000 psi (1035 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	3500 psi (240 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar) Optional Cracking: 50 psi (3.5 bar) Full Flow: 61 psi (4.2 bar) Non-bypassing model has a blocked bypass.
Porting Base & Cap: Element Case:	Ductile Iron Steel
Weight of MKF50-2K: Weight of MKF50-4K: Weight of MKF50-6K: Weight of MKC50-2K: Weight of MKC50-4K: Weight of MKC50-6K:	214.0 lbs. (97.3 kg) 243.0 lbs. (110.2 kg) 284.4 lbs. (129.0 kg) 216.0 lbs. (98.0 kg) 245.0 lbs. (111.1 kg) 286.4 lbs. (129.9 kg)
Element Change Clearance:	8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K

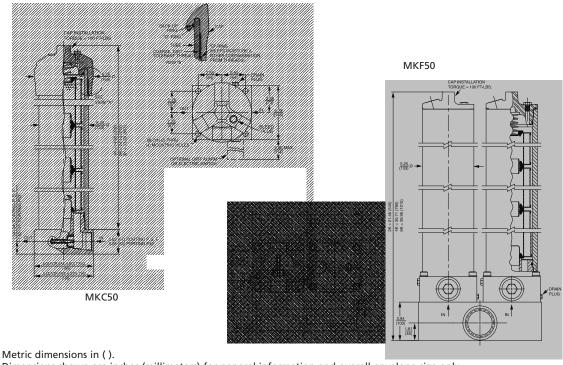
Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E-Media (cellulose) and Z-Media® and ASP® Media (synthetic)

High Water Content All Z-Media® and ASP® Media (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic), 10 μ ASP® Media (synthetic) Water Glycols 3, 5, 10 and 25 µ Z-Media® (synthetic), and all ASP® Media

Phosphate Esters All Z-Media® and ASP® Media (synthetic) with H (EPR) seal designation and 3 and 10 μ


E media (cellulose) with H (EPR) seal designation

3, 5, 10 and 25 μ Z-Media® (synthetic), and all ASP® Media (synthetic) with H.5 seal Skydrol[®] designation (EPR seals and stainless steel wire mesh in element, and light oil coating

on housing exterior)

SCHROEDER INDUSTRIES 111

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance **Information & Dirt Holding Capacity**

				Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402					Filtration Ratio per ISO 168 Using APC calibrated per ISO 11		
Element				ß x ≥	75	β _{X} ≥ 100	ß,	≥ 200	β _X (c) ≥ 20	00 β _X (c) ≥	≥ 1000
KZ1/KKZ1/27k	(Z1			<1.	.0	<1.0		<1.0	<4.0	4	.2
KZ3/KKZ3/27k	(Z3			<1.	.0	<1.0		<2.0	<4.0	4	.8
KZ5/KKZ5/27k	(Z5			2.5	5	3.0		4.0	4.8	6	.3
KZ10/KKZ10/2	27KZ10			7.4	4	8.2		10.0	8.0	10	0.0
KZ25/KKZ25/2	?7KZ25			18.	0	20.0		22.5	19.0	24	1.0
KZW1				N/A	Д	N/A		N/A	<4.0	<4	1.0
KZW3/KKZW3	3			N/A	Д	N/A		N/A	4.0	4.	.8
KZW5/KKZW5	5			N/A	Д	N/A		N/A	5.1	6.	.4
KZW10/KKZW	/10			N/A	Д	N/A		N/A	6.9	8.	.6
KZW25/KKZW	/25			N/A	Д	N/A		N/A	15.4	18	3.5
KZX3/KKZX3/2	27KZX3			<1.	.0	<1.0	<	2.0	4.7	5.	.8
KZX10/KKZX1	0/27KZX10			7.4	4	8.2	1	0.0	8.0	9.	8
Element	DHC (gm)	Element	DH	-	lemei	a+	DHC	Element	DHC	Element	DHC
	.5 .		(gr	_		11	(gm)		() /	Element	(gm)
KZ1	112	KKZ1	224		7KZ1		336	KZW1	61	1/1/7/1/2	120
KZ3	115	KKZ3	230		7KZ3		345	KZW3	64	KKZW3	128
KZ5	119	KK75	238	2	7K75		357	K7W5	63	KK7W5	126

Element	(gm)	Element	(gm)	Element	(gm)	Element	(gm)	Element	(gm)
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158
KZX3	81*	KKZX3	163*	27KZX3	249*				
KZX10	90*	KKZX10	182*	27KZX10	279*	* Based o	on 100 p	si terminal	pressure

* Based on 100 psi terminal pressure

Element Collapse Rating: 150 psid (10 bar) for standard elements

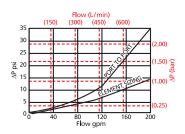
3000 psid (210 bar) for high collapse (ZX) versions

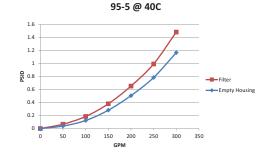
Flow Direction: Outside In

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

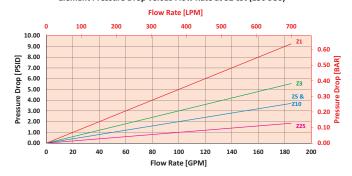
MKF50/ MKC50

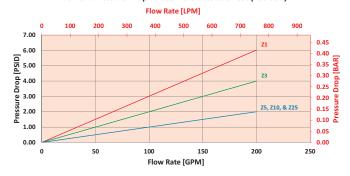

Pressure Drop Information Based on


Flow Rate

and Viscosity

 $\triangle \mathbf{P}_{\text{housing}}$


MKF50/MKC50 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle P_{element}$

4KZ/2KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

6KZ/2-27KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 100 gpm (379 L/min) for MKF504KZ10PD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 100 gpm. In this case, $\Delta P_{\text{housing}}$ is 8 psi (.55 bar) on the graph for the MKF50 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 100 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.14 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 8 \text{ psi } [.55 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 2 \text{ psi } [.14 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\triangle \mathbf{P}_{\text{filter}} = 8 \text{ psi} + (2 \text{ psi} * 1.1) = 10.2 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .55 \text{ bar} + (.14 \text{ bar} * 1.1) = .70 \text{ bar}$

Note: If your element is not graphed, use the following equation: $\Delta \textbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \textbf{P}_f. \text{ Plug this variable into the overall}$

pressure drop equation.

Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
2KZ1	0.10	2K3	0.12	4K3/ KK3	0.06
2KZ3	0.05	2K10	0.05	4K10/ KK10	0.02
2KZ5	0.04	2K25	0.01	4K25/ KK25	0.01
2KZ10	0.03	2KAS3	0.05	4KAS3/ KKAS3	0.03
2KZ25	0.02	2KAS5	0.04	4KAS5/ KKAS5	0.02
KZW1	0.43	2KAS10	0.03	4KAS10/ KKAS10	0.02
KZW3	0.32	2KZX10	0.11	4KZX10	0.06
KZX5	0.28	2KZW3	0.16	6KAS3/ 27KAS3	0.02
KZW10	0.23	2KZW5	0.14	6KAS5/ 27KAS5	0.01
KZW25	0.14	2KZW10	0.12	6KAS10/ 27KAS10	0.01
		2KZW25	0.07	6KZX10	0.04

Model Number Selection

How to Build a Valid Model Number for a Schroeder MFK50:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9
MKF50		-			-			_

4										
- 1	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	
1	144550	2V	_	4.0		В		D =		
-	MKF50-	- 2K –	· Z -	- 10 -		- P -	- -	- D5 F	-	= MKF502KZ10PD5

BOX 1

Filter Series

MKF50 MKFN50

(Non-bypassing: requires ZX high collapse elements)

GMKF50 (GeoSeal®)

MKC50 MKCN50

(Non-bypassing: requires ZX high collapse elements) WKC50

(Water)

None

Lockout

Electrical

Electrical

Thermal

Lockout

Electrical

Visual

with

BOX 2 **Number & Size of**

Elements K, KK, 27K

4 Κ 6

GeoSeal® Options 2 KG, KKG, 27KG

KG 6 KG

BOX 3

Media Type

Omit = E Media (Cellulose) (MKF50 only)

AS = Anti-Stat Media (synthetic)

Z = Excellement® Z-Media® (synthetic)

ZX = Excellement® Z-Media® (High Collapse centertube) (MKFN50 Only)

ZW = Aqua-Excellement ZW Media (MKF50 Only)

W = W Media (water removal)

M = Media (reusable metal mesh) (MKF50 & MKFN50 Only)

NOTES:

- Box 2. Number of elements must equal 2 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length. For standard elements, a plastic connector SAP P/N: 7630900 (LF-1997) is used to connect two or three K elements. For high collapse, a steel connector is required SAP P/N: 7608360 (LF-3255C).
- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 7. 50 option is not available with MKFN50.
- Box 8. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.
- Box 9. N option should be used in conjunction with dirt alarm.

BOX 4 **Micron Rating**

= 1 Micron (DZ, Z, ZW, ZX media) 1 3 (AS,DZ, E, Z, ZW, ZX media) 5 = 5 Micron (AS, DZ, Z, ZW, ZX media) (AS, DZ, E, M, Z, ZW, ZX media) 10 = 10 Micron

25 = 25 Micron (E. DZ. M. Z. ZW. ZX media) 60 = 60 Micron (M media)

= 150 Micron (M media) = 260 Micron (M media) BOX 5

Seal Material Omit = Buna N

V = Viton® H = EPR

H.5 = Skydrol® compatibility

BOX 6

 $= 2\frac{1}{2}$ Ρ

Porting Option

NPTF

Omit = None

X = Blocked bypass

BOX 7

Porting

50 = EPR

= Two 1/4" NPTF inlet and outlet female test ports

U = Series 1215 7/16 **UNF** Schroeder Check Test Point installed in cap (upstream)

BOX 8

Dirt Alarm® Options Omit = None

D = Pointer D5 = Visual pop-up Visual D5C = D5 in cap D9 = All stainless D5 Visual with D8 = Visual w/ thermal lockout Thermal

D8C = D8 in capMS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable

MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only)

MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire

MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12

MS16 = Electrical w/ weather-packed sealed connector

MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector

MS5T = MS5 (see above) w/ thermal lockout

MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout

MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout

MS12LCT = Low current MS12T

MS16T = MS16 (see above) w/ thermal lockout

MS16LCT = Low current MS16T MS17LCT = Low current MS17T

 $MS = Cam operated switch w <math>\frac{1}{2}$ conduit female connection

MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end) MS13DCT = MS13 (see above), direct current, w/ thermal lockout

Electrical Visual with MS13DCLCT = Low current MS13DCT Thermal MS14DCT = MS14 (see above), direct current, w/ thermal lockout

Lockout

MS14DCLCT = Low current MS14DCT

BOX 9

Additional Options

Omit = None

N = No-Element Indicator (not available w/ MKFN30/ MKCN50 or housings w/ indicator in cap)

Flow Rating:

Temp. Range:

Bypass Setting:

Element Case:

Max. Operating Pressure:

Rated Fatique Pressure:

Min. Yield Pressure:

Porting Base & Cap:

Weight of KC65-1K:

Weight of KC65-2K:

Weight of KC65-3K: Element Change Clearance: **Features and Benefits**

■ Base-ported high pressure filter

■ Patented dirt-tolerant cap design

Can be installed in vertical or horizontal position

Meets HF4 automotive standard

Element changeout from top minimizes oil spillage

■ Offered in flanged porting

Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids

19,500 psi (1345 bar), per NFPA T2.6.1

-20°F to 225°F (-29°C to 107°C)

Cracking: 40 psi (2.8 bar)

Full Flow: 75 psi (5.2 bar)

5000 psi (345 bar), per NFPA T2.6.1-2005

Non-bypassing model has a blocked bypass.

■ No-Element indicator option available

Available with non-bypass option with high collapse element

Integral inlet and outlet female test points option available

■ Double and triple stacking of K-size element can be replaced by single KK or 27K-size element

G Available with quality-protected GeoSeal® Elements (GKC65)

8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K

100 gpm 380 Ĺ/min 6500 psi 450 bar

KC65

Type Fluid	Appro	priate	Scl	hro	eder	Media

Petroleum Based Fluids All E media (cellulose) and Z-Media® (synthetic)

High Water Content All Z-Media® and ASP® Media (synthetic) Invert Emulsions 10 and 25 μ Z-Media® (synthetic), 10 μ ASP® Media (synthetic)

Water Glycols 3, 5, 10 and 25 µ Z-Media® (synthetic) and all ASP® Media (synthetic)

6500 psi (450 bar)

Ductile Iron

80 lbs. (36.3 kg)

102 lbs. (46.3 kg) 124 lbs. (56.3 kg)

Steel

Phosphate Esters All Z-Media® and ASP® Media (synthetic) with H (EPR) seal designation and 3

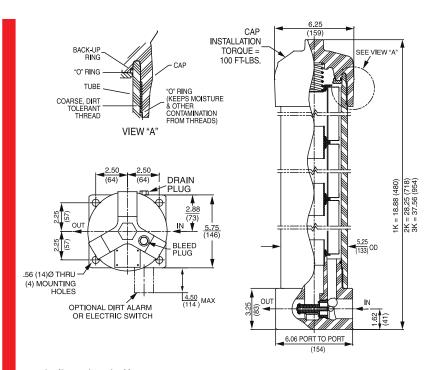
and 10 μ E media (cellulose) with H (EPR) seal designation

3, 5, 10 and 25 μ Z-Media® (synthetic) and ASP® Media (synthetic) with H.5 seal Skydrol® designation (EPR seals and stainless steel wire mesh in element, and light oil coating on

housing exterior)

Fluid Compatibility

Filter


Housing

Specifications

20-CRZX10

SCHROEDER INDUSTRIES 115

Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

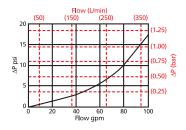
Element Performance Information & Dirt Holding Capacity

		ion Ratio Per ISO NFPA T3.10.8.8 partide counter (APC) ca	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 1117		
Element	ß _{x} ≥ 75	β _{X} ≥ 100	$\beta_{\mathbf{X}} \ge 200$	$\beta_{\mathbf{X}}(\mathbf{c}) \ge 200$	β _X (c) ≥ 1000
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5
KZX3/KKZX3/27KZX3	<1.0	<1.0	<2.0	4.7	5.8
KZX10/KKZX10/27KZX10	7.4	8.2	10.0	8.0	9.8

	DHC		DHC		DHC		DHC		DHC
Element	(gm)	Element	(gm)	Element	(gm)	Element	(gm)	Element	(gm)
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158
KZX3	81*	KKZX3	163*	27KZX3	249*				
KZX10	90*	KKZX10	182*	27KZX10	279*	* Based o	n 100 ps	si terminal p	oressure

Element Collapse Rating: 150 psid (10 bar) for standard elements

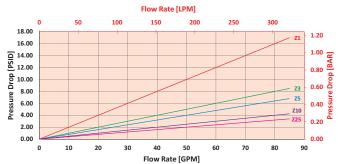
3000 psid (210 bar) for high collapse (ZX) versions

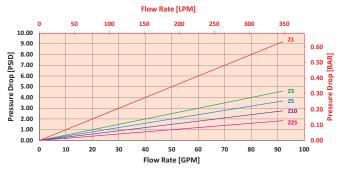

Flow Direction: Outside In

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

 $\triangle \mathbf{P}_{\text{housing}}$


KC65 \triangle **P**_{housing} for fluids with sp gr (specific gravity) = 0.86:


 $\triangle \textbf{P}_{\text{element}}$

KZ/KGZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2KZ/KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 50 gpm (189.5 L/min) for KC651KZ10FD9 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 4 psi (.27 bar) on the graph for the KC65 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 50 gpm. In this case, $\Delta P_{\text{element}}$ is 2.5 psi (.17 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 4 \text{ psi } [.27 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 2.5 \text{ psi } [.17 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 4 \text{ psi} + (2.5 \text{ psi} * 1.1) = 6.8 \text{ psi}$$

 $\Delta P_{\text{filter}} = .27 \text{ bar} + (.17 \text{ bar} * 1.1) = .46 \text{ bar}$

Pressure Drop **Information** Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = Flow Rate \times \Delta \mathbf{P}_f Plug$ this variable into the overall pressure drop equation.

picssui	c arc	p cquu	tioii.		
Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
K3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZX3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZX5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZX10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZX25	0.07	3KZX10/ 27KZX10	0.07

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder KC65:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10
KC65									

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10	
KC65	– 1K –	- Z -	- 10 -	-		- F -		- D5	_	= KC651KZ10FED5

BOX 1

Filter Series KC65

KCN65

(Non-

bypassing:

requires ZX high

collapse

Number & Size of Elements K, KK, 27K

2 GeoSeal® Options 1 KG, KKG, 27KG KG

KG

BOX 2

Media Type

Omit = E Media (Cellulose) AS = Anti-Stat Media (synthetic) Z = Excellement® Z-Media® (synthetic)

ZX = Excellement[®] Z-Media[®] (High Collapse centertube) (KCN65 Only) ZW = Aqua-Excellement ZW Media (KC65 Only)

BOX 3

W = W Media (water removal)

M = Media (reusable metal mesh) (KC65 & KCN65 Only)

elements) GKC65 (GeoSeal®)

BOX 4

BOX 5 **Seal Material**

BOX 6 **Magnet Option**

BOX 7

Micron Rating 1 = 1 Micron (Z, ZW, ZX media) 3 = 3 Micron (AS, E, Z, ZW, ZX media) 5 = 5 Micron (AS, Z, ZW, ZX media) 10 = 10 Micron (AS, E, M, Z, ZW, ZX media)

25 = 25 Micron (E, M, Z, ZW, ZX media) 60 = 60 Micron (M media) 150 = 150 Micron (M media) 260 = 260 Micron (M media)

Omit = Buna N V = Viton®

= Skydrol®

compatibility

H = FPR

Omit = None M = Magnet inserts (not available w/ indicator in cap)

Porting F = 1 ½" SAE

4-bolt flange Code 62

NOTES:

- Box 2. Number of elements must equal 1 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length. For standard elements, a plastic connector SAP P/N: 7630900 (LF-1997) is used to connect two or three K elements. For high collapse, a steel connector is required SAP P/N: 7608360 (LF-3255C).
- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 7. For option F, bolt depth 1.12" (30 mm).
- Box 8. X and 50 options are not available with KCN65.
- Box 9. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.
- Box 10. Option N is not available with KCN65. N option should be used in conjunction with dirt alarm.

BOX 8 BOX 9 **BOX 10** Options

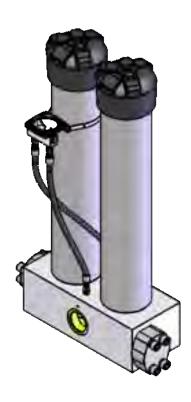
•	
Omit = None	
X = Blocked bypass	
50 = 50 psi bypass	

L = Two ¼" NPTF inlet & outlet female test ports

U = Series 1215 7/16 **UNF** Schroeder Check Test Point installed in cap (upstream)

UU = Series 1215 7/6 **UNF** Schroeder Check Test Point installed in block (upstream and downstream)

Di	rt Alarm® Options
Omit =	None
D9 =	All stainless D5
MS5SS =	Electrical w/ 12 in. 18 gauge 4-conductor cable
MS5SSLC =	Low current MS5
MS10SS =	Electrical w/ DIN connector (male end only)
MS10SSLC =	Low current MS10
MS11SS =	Electrical w/ 12 ft. 4-conductor wire
MS12SS=	Electrical w/ 5 pin Brad Harrison connector (male end only)
MS12SSLC =	Low current MS12
MS16SS =	Electrical w/ weather-packed sealed connector
MS16SSLC =	Low current MS16
MS17SSLC =	Electrical w/ 4 pin Brad Harrison male connector
MS5T =	MS5 (see above) w/ thermal lockout
MS5LCT =	Low current MS5T
MS10T =	MS10 (see above) w/ thermal lockout
MS10LCT =	Low current MS10T
MS12T =	MS12 (see above) w/ thermal lockout
MS12LCT =	Low current MS12T
MS16T =	MS16 (see above) w/ thermal lockout
	Omit = D9 = MS5SS = MS5SSLC = MS10SS = MS10SSLC = MS11SS = MS12SS = MS12SS = MS16SS = MS16SS = MS16SS = MS17SSLC = MS5T = MS5LCT = MS5LCT = MS10T = MS12T = MS12LCT =


MS16LCT = Low current MS16T MS17LCT = Low current MS17T $MS = Cam operated switch w/ <math>\frac{1}{2}$ " conduit female connection Flectrical MS13DC = Supplied w/ threaded connector & lightVisual MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end) MS13DCT = MS13 (see above), direct current, w/ thermal lockout Electrical MS13DCLCT = Low current MS13DCT Visual with MS14DCT = MS14 (see above), direct current, w/ thermal lockout Thermal MS14DCLCT = Low current MS14DCT Lockout

Additional Options

Omit = None

N = No-Element Indicator (not available w/ KFN65 or housings w/ indicator in cap)

G509 = Dirt Alarm and drain opposite standard

Features and Benefits

- Base-ported high pressure dual filter manifold mounted
- Meets HF4 automotive standard
- Element changeout from top minimizes oil spillage
- Offered in pipe porting (contact factory for other porting options)
- No-Element indicator option available
- Available with non-bypass option with high collapse element
- Integral inlet and outlet female test points option available
- Double and triple stacking of K-size elements can be replaced by single KK or 27K-size elements

200 gpm 760 L/min 300 gpm 1,136 L/min* 6000 psi 413 bar

KC65

MKC65

Fluid Compatibility

Filter Housing **Specifications**

20-CRZX10

Model No. of filter in photograph is MKC654K10BD5.

Flow Rating:	Up to 200 gpm (760 L/min) for 150 SUS (32 cSt) fluids Up to 300 gpm (1,136 L/min) for Water/Oil Emulsions
Max. Operating Pressure:	6000 psi (413 bar)
Min. Yield Pressure:	18,000 psi (1240 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	4500 psi (310 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar) Optional Cracking: 50 psi (3.5 bar) Full Flow: 61 psi (4.2 bar) Non-bypassing model has a blocked bypass.
Porting Base & Cap: Element Case:	Ductile Iron Steel
Weight of MKC65-2K: Weight of MKC65-4K: Weight of MKC65-6K:	216.0 lbs. (98.0 kg) 245.0 lbs. (111.1 kg) 286.4 lbs. (129.9 kg)
Element Change Clearance:	8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K

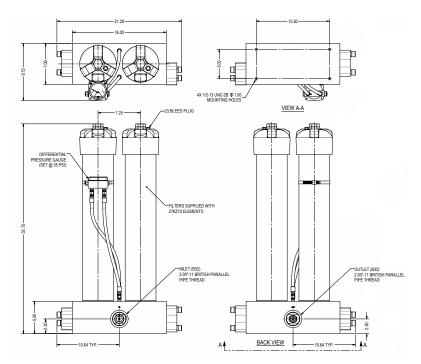
Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E-Media (cellulose) and Z-Media® and ASP® Media (synthetic)

High Water Content All Z-Media® and ASP® Media (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic), 10 μ ASP® Media (synthetic) Water Glycols 3, 5, 10 and 25 µ Z-Media® (synthetic), and all ASP® Media

Phosphate Esters All Z-Media® and ASP® Media (synthetic) with H (EPR) seal designation and 3 and 10 μ


E media (cellulose) with H (EPR) seal designation

3, 5, 10 and 25 μ Z-Media® (synthetic), and all ASP® Media (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating

on housing exterior)

MKC65

Base-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

					Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element				ß _x	≥ 75	β _{X} ≥ 100	ß	x ≥ 200	β _χ (c) ≥ 2	00 β _χ (c)	≥ 1000
KZ1/KKZ1/27KZ	<u>7</u> 1			<	1.0	<1.0		<1.0	<4.0	4	.2
KZ3/KKZ3/27K2	<u>7</u> 3			<	1.0	<1.0		<2.0	<4.0	4	.8
KZ5/KKZ5/27KZ	Z 5			2	2.5	3.0		4.0	4.8	6	i.3
KZ10/KKZ10/27	'KZ10			7	7.4	8.2		10.0	8.0	10	0.0
KZ25/KKZ25/27	KZ25			18	8.0	20.0		22.5	19.0	24	4.0
KZW1				Ν	I/A	N/A		N/A	<4.0	<	4.0
KZW3/KKZW3				Ν	I/A	N/A		N/A	4.0	4	.8
KZW5/KKZW5				Ν	I/A	N/A		N/A	5.1	6	.4
KZW10/KKZW1	10			Ν	I/A	N/A		N/A	6.9	8	3.6
KZW25/KKZW2	25			Ν	I/A	N/A		N/A	15.4	18	3.5
KZX3/KKZX3/2	7KZX3			<	1.0	<1.0		<2.0	4.7	5	.8
KZX10/KKZX10	/27KZX10			7	7.4	8.2	1	0.0	8.0	9	.8
Element	DHC (gm)	Element	DH (gm	-	Eleme	nt	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224		27KZ1		336	KZW1	61		
KZ3	115	KKZ3	230		27KZ3		345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238		27KZ5		357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216		27KZ10)	324	KZW10	57	KKZW10	114

27KZ25

27KZX3

27KZX10

Element Collapse Rating: 150 psid (10 bar) for standard elements

186

163*

182*

3000 psid (210 bar) for high collapse (ZX) versions

279

249*

279*

KZW25

KKZW25

* Based on 100 psi termianl pressure

158

Flow Direction: Outside In

KKZ25

KKZX3

KKZX10

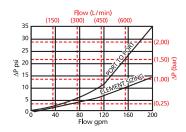
93

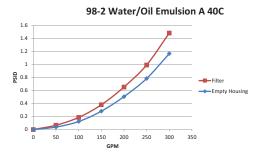
81*

90*

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

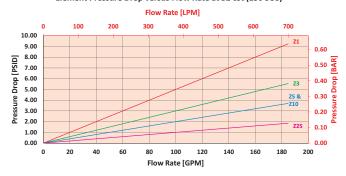
27K: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

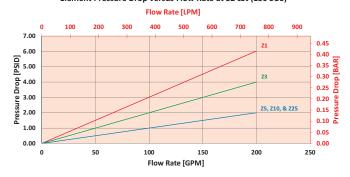

KZ25


KZX3

KZX10

 $\triangle \mathbf{P}_{\text{housing}}$


MKC65 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle P_{element}$

4KZ/2KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

6KZ/2-27KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$

Exercise:

Determine ΔP_{filter} at 100 gpm (379 L/min) for MKC654KZ10PD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 100 gpm. In this case, $\Delta P_{\text{housing}}$ is 8 psi (.55 bar) on the graph for the MKC65 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 100 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.14 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\triangle P_{\text{element}}^* \vee_f$). The $\triangle P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 8 \text{ psi } [.55 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 2 \text{ psi } [.14 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta P_{\text{filter}} = 8 \text{ psi} + (2 \text{ psi} * 1.1) = 10.2 \text{ psi}$

 $\Delta P_{\text{filter}} = .55 \text{ bar} + (.14 \text{ bar} * 1.1) = .70 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f$ Plug this variable into the overall

Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
2KZ1	0.10	2K3	0.12	4K3/ KK3	0.06
2KZ3	0.05	2K10	0.05	4K10/ KK10	0.02
2KZ5	0.04	2K25	0.01	4K25/ KK25	0.01
2KZ10	0.03	2KAS3	0.05	4KAS3/ KKAS3	0.03
2KZ25	0.02	2KAS5	0.04	4KAS5/ KKAS5	0.02
KZW1	0.43	2KAS10	0.03	4KAS10/ KKAS10	0.02
KZW3	0.32	2KZX10	0.11	4KZX10	0.06
KZX5	0.28	2KZW3	0.16	6KAS3/ 27KAS3	0.02
KZW10	0.23	2KZW5	0.14	6KAS5/ 27KAS5	0.01
KZW25	0.14	2KZW10	0.12	6KAS10/ 27KAS10	0.01
		2KZW25	0.07	6KZX10	0.04

KC65

Base-Ported Pressure Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder MKC65:

BOX 6 BOX 8 В MKC65-2K Ζ 10 D5 = MKC652KZ10BD5

Number & Size of Filter Series Elements

BOX 1

MKC65

3

5

10

2 Κ

BOX 2

K, KK, 27K 4 6 GeoSeal® Options 2 KG, KKG, 27KG

Media Type Omit = E Media (Cellulose) AS = Anti-Stat Media (synthetic)

Z = Excellement® Z-Media® (synthetic) ZX = Excellement® Z-Media® (High Collapse centertube) ZW = Aqua-Excellement ZW Media

вох з

W = W Media (water removal)

KG KG M = Media (reusable metal mesh) BOX 5

BOX 6 BOX 7

BOX 4 **Micron Rating**

4

6

(DZ, Z, ZW, ZX media) = 1 Micron (AS,DZ, E, Z, ZW, ZX media) = 3 Micron = 5 Micron (AS, DZ, Z, ZW, ZX media) = 10 Micron (AS, DZ, E, M, Z, ZW, ZX media) = 25 Micron (E, DZ, M, Z, ZW, ZX media)

25 60 = 60 Micron (M media) 150 = 150 Micron (M media) = 260 Micron (M media) 260

Seal Material

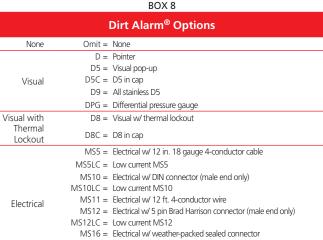
Omit = Buna N V = Viton® H = EPR

H.5 = Skydrol® compatibility **Porting** Option

Omit = None B = 2" BSPP

X = Blocked bypass

50 = EPR


= Two 1/4" NPTF inlet and outlet female test ports

Porting

U = Series 1215 1/16 **UNF** Schroeder Check Test Point installed in cap (upstream)

NOTES:

- Box 2. Number of elements must equal 2 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length. For standard elements, a plastic connector SAP P/N: 7630900 (LF-1997) is used to connect two or three K elements. For high collapse, a steel connector is required SAP P/N: 7608360 (LF-3255C).
- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 8. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.
- Box 9. N option should be used in conjunction with dirt alarm.

MS16LC = Low current MS16MS17LC = Electrical w/ 4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout Electrical MS10LCT = Low current MS10T with MS12T = MS12 (see above) w/ thermal lockout Thermal MS12LCT = Low current MS12T Lockout MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T $MS = Cam operated switch w <math>\frac{1}{2}$ conduit female connection Electrical MS13 = Supplied w/ threaded connector & light Visual MS14 = Supplied w/5 pin Brad Harrison connector & light (male end)

MS13DCT = MS13 (see above), direct current, w/ thermal lockout

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

MS13DCLCT = Low current MS13DCT

MS14DCLCT = Low current MS14DCT

BOX 9

Additional Options

Omit = None

N = No-Element Indicator

Electrical

Thermal

Lockout

Visual with

Features and Benefits

■ Full flow reverse flow check valve diverts flow past the element in hydrostatic applications

- Top-ported design capable of handling 100 gpm flow
- Offered in SAE straight thread and flange porting
- Thread on bowl with drain plug for easy element service
- 6000 psi cyclic
- Certified for Offshore Standard DNVGL-OS-D101 "Marine and Machinery Systems and Equipment"
- Contact factory for higher flow applications

120 gpm <u>450 L/min</u> 6000 psi <u>415 bar</u>

Filter Housing Specifications

Fluid

NF30

NFS30

1150

PLD

CF40

DF40

PF40

RFS50

DECO

.....

V 1 00

KF30 KF50

KC50

/IKF50

MKC50

KC65

MKC65

HS60

MHS60

KFH50

LC60

LC35

LC50

F30-05

Compatibility

EOECO 01

. . . .

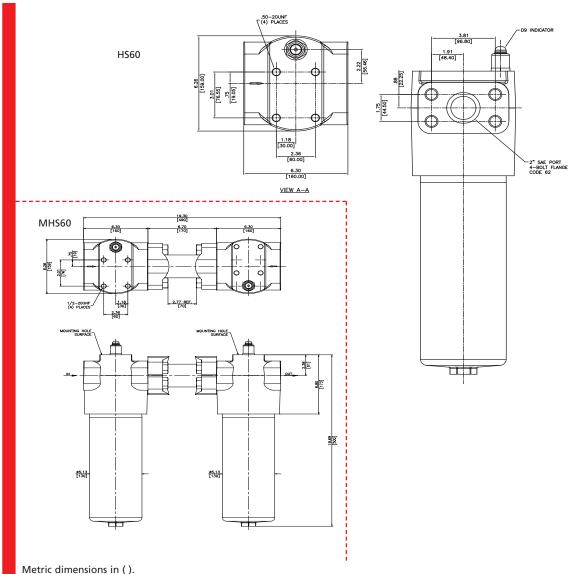
14-CRZX10

20-CRZX10

 $Model \ No. \ of \ filters \ in \ photograph \ are \ HS6013HZ3F24 \ and \ MHS6013HZ3F24.$

Flow Rating: Up to 100 gpm (380 L/min) Max. Operating Pressure: 6000 psi (415 bar) only for flange ported models Min. Yield Pressure: Contact factory Rated Fatigue Pressure: 6000 psi (415 bar) (only with 4-bolt flange porting) Temp. Range: -20°F to 225°F (-29°C to 107°C) Bypass Setting: Cracking: 87 psi (5.9 bar) Porting Head: Ductile Iron Element Case: Steel Weight of HS60-13H: 75 lbs. (34.2 kg) Weight of MHS60: 160 lbs. (72.6 kg)		
Min. Yield Pressure: Contact factory Rated Fatigue Pressure: 6000 psi (415 bar) (only with 4-bolt flange porting) Temp. Range: -20°F to 225°F (-29°C to 107°C) Bypass Setting: Cracking: 87 psi (5.9 bar) Porting Head: Ductile Iron Element Case: Steel Weight of HS60-13H: 75 lbs. (34.2 kg)	Flow Rating:	Up to 100 gpm (380 L/min)
Rated Fatigue Pressure: 6000 psi (415 bar) (only with 4-bolt flange porting) Temp. Range: -20°F to 225°F (-29°C to 107°C) Bypass Setting: Cracking: 87 psi (5.9 bar) Porting Head: Ductile Iron Element Case: Steel Weight of HS60-13H: 75 lbs. (34.2 kg)	Max. Operating Pressure:	6000 psi (415 bar) only for flange ported models
(only with 4-bolt flange porting) Temp. Range: -20°F to 225°F (-29°C to 107°C) Bypass Setting: Cracking: 87 psi (5.9 bar) Porting Head: Ductile Iron Steel Weight of HS60-13H: 75 lbs. (34.2 kg)	Min. Yield Pressure:	Contact factory
Bypass Setting: Cracking: 87 psi (5.9 bar) Porting Head: Ductile Iron Element Case: Steel Weight of HS60-13H: 75 lbs. (34.2 kg)	Rated Fatigue Pressure:	
Porting Head: Ductile Iron Element Case: Steel Weight of HS60-13H: 75 lbs. (34.2 kg)	Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Weight of HS60-13H: 75 lbs. (34.2 kg)	Bypass Setting:	Cracking: 87 psi (5.9 bar)
3	3	
vveight of ivitized. 100 lbs. (72.0 kg)	3	· 3/
Element Change Clearance: 4.0" (103 mm)	Element Change Clearance:	4.0" (103 mm)

Type Fluid Appropriate Schroeder Media


High Water Content All Z-Media® (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic)

Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation

Element Performance Information & Dirt Holding Capacity Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

			per ISO 16889 ted per ISO 11171		
$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$	
<1.0	<1.0	<2.0	<4.0	4.8	
2.5	3.0	4.0	4.8	6.3	
7.4	8.2	10.0	8.0	10.0	
18.0 20.0		22.5	19.0	24.0	
DHC (gm))	Element	DHC (g	jm)	
100.7		13HZX3	7		
113.2		13HZX5			
119.7		13HZX10	81.4		
	Using automated part $\beta_x \ge 75$ <1.0 2.5 7.4 18.0 DHC (gm) 100.7 113.2	Using automated particle counter (APC $\beta_x \ge 75$ $\beta_x \ge 100$ <1.0 <1.0 2.5 3.0 7.4 8.2 18.0 20.0 DHC (gm) 100.7 113.2	Color	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Element Collapse Rating: 290 psi (20 bar) for standard elements

3045 psi (210 bar) for high collapse (ZX) versions

92.9

13HZX25

Flow Direction: Outside In

123.5

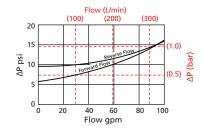
Element Nominal Dimensions: 13HZ: 3.5" (90 mm) O.D. x 13" (325 mm) long

13HZ25

HS60/ MHS60

Pressure

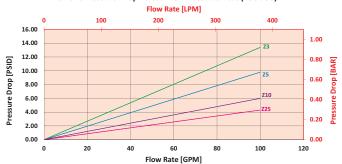
Flow Rate


and Viscosity

Information
Based on

Drop

 $\triangle \textbf{P}_{\text{housing}}$


HS60/MHS60 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle P_{element}$

13HZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 30 gpm (113.7 L/min) for HS6013HZ10S24D13 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 30 gpm. In this case, $\Delta P_{\text{housing}}$ is 7 psi (.48 bar) on the graph for the HS60 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 30 gpm. In this case, $\Delta P_{\text{element}}$ is 2 psi (.14 bar) according to the graph for the 13HZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\triangle \mathbf{P}_{\text{housing}} = 7 \text{ psi } [.48 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 2 \text{ psi } [.14 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta \mathbf{P}_{\text{filter}} = 7 \text{ psi} + (2 \text{ psi} * 1.1) = 9.2 \text{ psi}$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .48 \text{ bar} + (.14 \text{ bar} * 1.1) = .63 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_f$. Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$
13HZX3	0.176
13HZX5	0.104
13HZX10	0.054
13HZX25	0.048

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder HS60:

HS60 -	BOX 2	BOX 3	BOX 4	BOX 5	
Example: /	NOTE: One opti	on per box			
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	
HS60 -	– 13HZ3 –	_	F24 -	D13	= HS6013HZ3F24D13

BOX 1 BOX 2 BOX 3

Filter Series

.....

HS60

HSN60 (Non-bypassing: requires ZX high collapse elements)

MHS60

MHSN60

(Non-bypassing: requires ZX high collapse elements)

Element Part Number

13HZ3 = 3 μ Excellement® Z-Media® (synthetic)

13HZ5 = 5 μ Excellement® Z-Media® (synthetic)

13HZ10 = 10 μ Excellement® Z-Media® (synthetic)

13HZ25 = 25 μ Excellement® Z-Media® (synthetic)

13HZX3 = 3 μ Excellement® Z-Media® (high collapse center tube)

13HZX5 = 5 μ Excellement® Z-Media® (high collapse center tube)

13HZX10 = 10 μ Excellement® Z-Media® (high collapse center tube)

13HZX25 = 25 μ Excellement® Z-Media® (high collapse center tube)

F

BOX 4 Porting Options

S24 = SAE-24

F24 = 1½" SAE 4-bolt flange Code 62

F32 = 2 "SAE 4-bolt flange Code

BOX 5

Seal Material

Omit = Buna N

H = EPR

V = Viton®

	Dirt Alarm [®] Options
None	Omit = None
Visual	D13 = Visual pop-up
	MS5SS = Electrical w/ 12 in. 18 gauge 4-conductor cable
	MS5SSLC = Low current MS5
	MS10SS = Electrical w/ DIN connector (male end only)
	MS10SSLC = Low current MS10
	MS11SS = Electrical w/ 12 ft. 4-conductor wire
Electrical	MS12SS= Electrical w/ 5 pin Brad Harrison connector (male end only)
	MS12SSLC = Low current MS12
	MS16SS = Electrical w/ weather-packed sealed connector
	MS16SSLC = Low current MS16
	MS17SSLC = Electrical w/ 4 pin Brad Harrison male connector
	MS5SST = MS5 (see above) w/ thermal lockout
	MS5SSLCT = Low current MS5T
	MS10SST = MS10 (see above) w/ thermal lockout
Electrical	MS10SSLCT = Low current MS10T
with Thermal	MS12SST = MS12 (see above) w/ thermal lockout
Lockout	MS12SSLCT = Low current MS12T
	MS16SST = MS16 (see above) w/ thermal lockout
	MS16SSLCT = Low current MS16T
	MS17SSLCT = Low current MS17T
Electrical	MS13SS = Supplied w/ threaded connector & light
Visual	$MS14SS = \frac{\text{Supplied w/ 5 pin Brad Harrison connector \& light (male end)}}{\text{end}}$
Electrical	MS13SSDCT = MS13 (see above), direct current, w/ thermal lockout
Visual with	MS13SSDCLCT = Low current MS13DCT
Thermal	MS14SSDCT = MS14 (see above), direct current, w/ thermal lockout
Lockout	MS14SSDCLCT = Low current MS14DCT

NOTES:

- Box 2. Replacement element part numbers are identical to contents of Boxes 2 and 3.
- Box 3. Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 5. All Dirt Alarm®
 Indicators must be
 Stainless Steel. Standard
 indicator setting is 75
 psi. For replacement
 indicators, contact the
 factory.

Hydrostatic Base-Ported Filter KFH50

Features and Benefits

Base-ported Hydrostatic high pressure filter

- Hydrostatic transmission filter for reversing loop systems
- Filters in the "in to out" direction, bypasses in reverse direction
- Element changeout from top minimizes oil spillage
- Offered in pipe, SAE straight thread, flanged and ISO 228 porting
- Integral inlet and outlet female test points option available
- Offered in conventional subplate porting
- Completion of application questionnaire a requirement L-2549 (contact factory)
- Double and triple stacking of K-size elements can be replaced by single KK or 27K-size elements

70 gpm 265 L/min 5000 psi 345 bar

Filter Housing **Specifications**

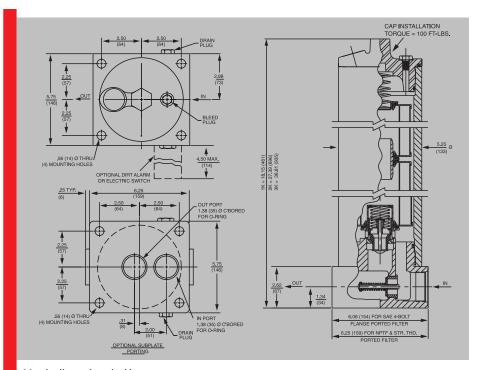
KC50

KC65

KFH50

Fluid Compatibility

20-CRZX10


	_
Flow Rating:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	5000 psi (345 bar)
Min. Yield Pressure:	15,000 psi (1035 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	3500 psi (240 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 61 psi (4.2 bar)
Porting Base & Cap: Element Case:	Ductile Iron Steel
Weight of KFH50-1K: Weight of KFH50-2K: Weight of KFH50-3K:	60.0 lbs. (27.2 kg) 80.3 lbs. (36.4 kg) 100.5 lbs. (45.6 kg)
Element Change Clearance:	8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K

Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® Media (synthetic) **High Water Content** All Z-Media® (synthetic) **Invert Emulsions** 10 and 25 μ Z-Media® (synthetic) Water Glycols 3, 5, 10 and 25 µ Z-Media[®] (synthetic) All Z-Media® (synthetic) with H (EPR) seal designation and 3 and 10 μ E media **Phosphate Esters** (cellulose) with H (EPR) seal designation Skydrol® 3, 5, 10 and 25 μ Z-Media $^{\circ}$ (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

SCHROEDER INDUSTRIES 127

Hydrostatic Base-Ported Filter

Element Performance Information & Dirt Holding Capacity

Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	ß _{x} ≥ 75	$\beta_{\boldsymbol{X}} \geq 100$	$\beta_{\boldsymbol{X}} \geq 200$	β _X (c) ≥ 200	β_X(c) ≥ 1000
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5
KZX3/KKZX3/27KZX3	<1.0	<1.0	<2.0	4.7	5.8
KZX10/KKZX10/27KZX10	7.4	8.2	10.0	8.0	9.8

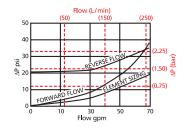
Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158
KZX3	81*	KKZX3	163*	27KZX3	249*				
KZX10	90*	KKZX10	182*	27KZX10	279*	* Based	d on 100) psi termin	al pressui

^{*} Based on 100 psi terminal pressure

Element Collapse Rating: 150 psid (10 bar) for standard elements

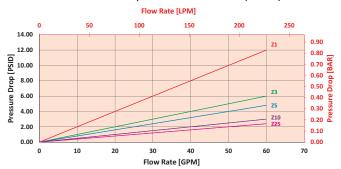
3000 psid (210 bar) for high collapse (ZX) versions

Flow Direction: Outside In

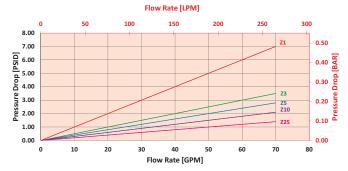

K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long **Element Nominal Dimensions:**

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Hydrostatic Base-Ported Filter KFH


 $\triangle \textbf{P}_{\text{housing}}$

KFH50 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle \textbf{P}_{\text{element}}$

ΚZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2KZ/KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$$

Exercise:

Determine ΔP_{filter} at 30 gpm (113.7 L/min) for KFH501KZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 30 gpm. In this case, $\Delta P_{\text{housing}}$ is 9 psi (.62 bar) on the graph for the KFH50 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 30 gpm. In this case, $\Delta P_{\text{element}}$ is 1.5 psi (.10 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 9 \text{ psi } [.62 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 1.5 \text{ psi } [.10 \text{ bar}]$

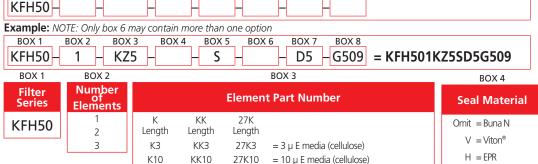
 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\triangle \mathbf{P}_{\text{filter}} = 9 \text{ psi} + (1.5 \text{ psi} * 1.1) = 10.7 \text{ psi}$$

 $\Delta \mathbf{P}_{\text{filter}} = .62 \text{ bar} + (.10 \text{ bar} * 1.1) = .73 \text{ bar}$

Pressure Drop **Information** Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \overline{\text{Flow}} \text{ Rate } \mathbf{x} \Delta \mathbf{P}_f \text{ Plug}$ this variable into the overall pressure drop equation


Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	80.0
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KAS25/ 27KAS25	0.07

Hydrostatic Base-Ported Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder KFH50: BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8

K25 = 25 µ E media (cellulose) = 1 µ Excellement® Z-Media® (synthetic) KZ1 KKZ1 27KZ1 KZ3 KKZ3 = 3 μ Excellement® Z-Media® (synthetic) KZ5 KKZ5 = 5 μ Excellement® Z-Media® (synthetic) 27KZ10 = 10 μ Excellement® Z-Media® (synthetic) KZ10 27KZ25 = 25 μ Excellement® Z-Media® (synthetic) KZ25 KZW1 = 1 μ Aqua-Excellement™ ZW media = 3 μ Aqua-Excellement™ ZW media KZW3 KKZW3 = 5 μ Aqua-Excellement™ ZW media KZW5 KKZW5 KKZW10 KZW10

= 10 μ Aqua-Excellement™ ZW media = 25 μ Aqua-Excellement™ ZW media = W media (water removal)

= K size 10 µ M media (reusable metal)

H.5 = Skydrol[®] compatibility

BOX 5

Porting

P = 1½" NPTF

S = SAE-24

F = 1½" SAE

O = Subplate

4-bolt flange

Code 62

B = ISO 228 G-1½"

= K size 25 μ M media (reusable metal) = K size 60 μ M media (reusable metal)

= K size 150 μ M media (reusable metal) = K size 260 μ M media (reusable metal)

NOTES:

Box 2. Number of elements must equal 1 when using KK or 27K elements.

Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length.

Box 4. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol® is a registered trademark of Solutia Inc.

Box 5. For option F, bolt depth .75" (19 mm). For option O, O-rings included; hardware not included. Options

BOX 6

KZW25

ΚW

KM10

KM25

KM60

KM150

KM260

KKZW25

KKW

Lockout

Omit = None

L = Two ¼" NPTF inlet and outlet female test ports

U = Series 1215 1/16 UNF Schroeder Check Test Point installation in cap (upstream)

UU = Series 1215 % UNF Schroeder Check Test Point installation in block (upstream and downstream) BOX 7

		Pirt Alarm [®] Options
None	Omit =	
	D =	Pointer
Visual		Visual pop-up
Visuai		D5 in cap
		All stainless D5
Visual with		Visual w/ thermal lockout
Thermal	D8C =	D8 in cap
Lockout		
		Electrical w/ 12 in. 18 gauge 4-conductor cable
		Low current MS5
		Electrical w/ DIN connector (male end only)
		Low current MS10
Electrical		Electrical w/ 12 ft. 4-conductor wire
Liccurcui		Electrical w/ 5 pin Brad Harrison connector (male end only)
	MS12LC =	Low current MS12
	MS16 =	Electrical w/ weather-packed sealed connector
	MS16LC =	Low current MS16
		Electrical w/ 4 pin Brad Harrison male connector
		MS5 (see above) w/ thermal lockout
		Low current MS5T
et et i	MS10T =	MS10 (see above) w/ thermal lockout
Electrical with	MS10LCT =	Low current MS10T
Thermal	MS12T =	MS12 (see above) w/ thermal lockout
Lockout	MS12LCT =	Low current MS12T
	MS16T =	MS16 (see above) w/ thermal lockout
	MS16LCT =	Low current MS16T
		Low current MS17T
Electrical	MS =	Cam operated switch w/ ½" conduit female connection
Visual	MS13DC =	Supplied w/ threaded connector & light
visual		Supplied w/ 5 pin Brad Harrison connector & light (male end)
Electrical		MS13 (see above), direct current, w/ thermal lockout
Visual with	MS13DCLCT =	Low current MS13DCT
Thermal	MS14DCT =	MS14 (see above), direct current, w/ thermal lockout

MS14DCLCT = Low current MS14DCT

BOX 8

Additional Options

Omit = None

G509 = Dirt alarm and drain opposite standard

In-Line Filter LC60

Features and Benefits (LC60)

- Compact design allows for in-line installation.
- Small profile allows filter to be mounted in tight areas.
- Quick and easy cartridge element change outs.
- Durable, compact design.
- Uses 10 micron stainless steel wire mesh filtration.
- Perfect for pilot pressure circuits and pressure compensated pump protection.

8 gpm 30 L/min 6000 psi 415 bar

Filter

Fluid

Housing

Specifications

Compatibility

KF30

KF50

KC50

KC65

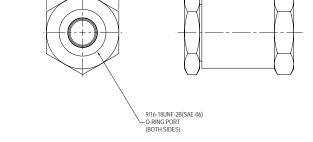
LC60

20-CRZX10

Model No. of filter in photograph is LC601SSD10S.

Flow Rating: Up to 8 gpm (30 L/min) for 150 SUS (32 cSt) fluids 6000 psi (414 bar) Max. Operating Pressure: Min. Yield Pressure: 18000 psi (1241 bar), per NFPA T2.6.1 Rated Fatique Pressure: 6000 psi (414 bar), per NFPA T2.6.1 Temp. Range: -20°F to 225°F (-29°C to 107°C)

> Porting Head: Steel Element Case: Steel


Weight: 0.93 lbs. (0.42 kg) **Element Change** 2.50" (63.5 mm)

Clearance:

Water Glycols

Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All Stainless Steel Wire Mesh **Invert Emulsions** 10 μ Stainless Steel Wire Mesh

10 μ Stainless Steel Wire Mesh

Metric dimensions in ().

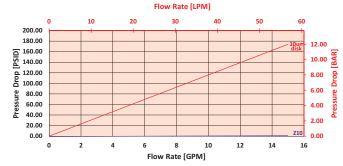
Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

C60 In-Line Filter

Element **Performance Information & Dirt Holding Capacity**

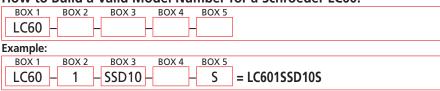
Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402 $\beta_x \ge 75$ $\beta_x \ge 100$ $\beta_x \ge 200$

Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171 $\beta_x(c) \ge 1000$ $\beta_x(c) \ge 200$


Please contact manufacture for more details

Pressure Drop Information Based on Flow Rate and Viscosity $\triangle \textbf{P}_{\text{housing}}$

Element


LC60 \triangle P_{housing} for fluids with sp gr (specific gravity) = 0.86:

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder LC60:

BOX 1 BOX 2 BOX 3 **Number of Filter Series Element Part Number** Elements LC60 SSD10 = 10μ Stainless Steel Wire Mesh

BOX 4 BOX 5 **Seal Material Porting** Omit = Buna N S = SAE-6

In-Line Filter LC35

Features and Benefits (LC35)

- Compact design allows for in-line installation.
- Small profile allows filter to be mounted in tight areas.
- Quick and easy cartridge element change outs.
- Durable, compact design.
- Uses 10 or 40 micron Sintered Bronze filtration.
- Perfect for pilot pressure circuits and pressure compensated pump protection.

15 gpm 57 Ľ/min 3500 psi 241 bar

Filter

Fluid

Compatibility

Housing

Specifications

KF50

KC50

KC65

LC35

20-CRZX10

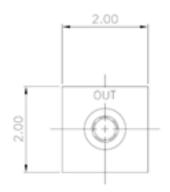
Model No. of filter in photograph is LC351BS10S.

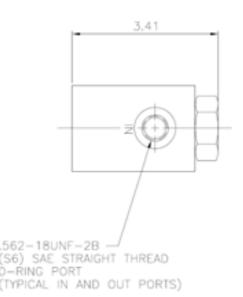
Flow Rating: Up to 15 gpm (57 L/min) for 150 SUS (32 cSt) fluids

Max. Operating Pressure: 3500 psi (241 bar)

Min. Yield Pressure: 10500 psi (724 bar), per NFPA T2.6.1 Rated Fatigue Pressure: 2200 psi (152 bar), per NFPA T2.6.1 Temp. Range: -20°F to 225°F (-29°C to 107°C)

> Porting Head: Steel Element Case: Steel


1.32 lbs. (0.60 kg) Weight: **Element Change** 3.25" (82.6 mm)


Clearance:

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All Sintered Bronze

> **Invert Emulsions** 10 and 40 μ Sintered Bronze Water Glycols 10 and 40 μ Sintered Bronze

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

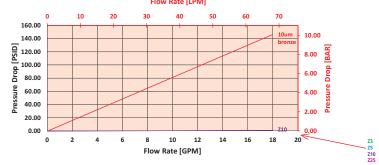
C35 In-Line Filter

Element Performance Information & Dirt Holding Capacity

 $\label{eq:filtration} \begin{aligned} & \text{Filtration Ratio Per ISO 4572/NFPA T3.10.8.8} \\ & \text{Using automated particle counter (APC) calibrated per ISO 4402} \\ & \beta_x \geq 75 & \beta_x \geq 100 & \beta_x \geq 200 \end{aligned}$

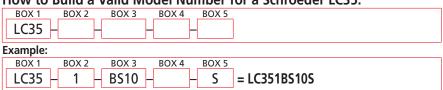
Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171 $\beta_{\mathbf{v}}(c) \ge 200$ $\beta_{\mathbf{v}}(c) \ge 1000$

Please contact manufacture for more details


Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

 $\triangle \textbf{P}_{\text{housing}}$

Element


LC35 \triangle **P**_{housing} for fluids with sp gr (specific gravity) = 0.86:

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM]

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder LC35:

BOX 1
BOX 2
BOX 3
BOX 4

Filter Series

LC35

Number of Elements
BS10 = 10 μ Sintered Bronze
BS40 = 40 μ Sintered Bronze

BOX 5
Porting

S = SAE-6

In-Line Filter LC50

Features and Benefits

- Compact design allows for in-line installation on hose reels
- High quality synthetic ZX-Media high collapse elements ensure all fluid is filtered
- Available with SAE or NPT threading
- Convenient 2 1/4" Hex for easy service

9 gpm 35 L/min 5000 psi 345 bar

Filter

Fluid

Compatibility

Housing

Specifications

KF30

KF50

KC65

LC50

20-CRZX10

Model No. of filter in photograph is LC501LZX10S.

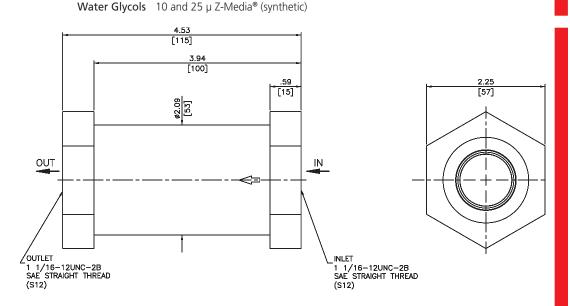
Flow Rating: Up to 9 gpm (35 L/min) for 150 SUS (32 cSt) fluids

Max. Operating Pressure: 5000 psi (350 bar) Min. Yield Pressure: 15,000 psi (1050 bar)

Rated Fatigue Pressure: 5000 psi (350 bar), per NFPA T2.6.1-R1-2005

Temp. Range: -20°F to 225°F (-29°C to 107°C)

Body and Cap: Steel Element Case: Steel


Weight of LC50: 3.63 lbs. (1.65 kg)

Element Change Clearance: 3.25" (83 mm)

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All Z-Media® (synthetic) High Water Content All Z-Media® (synthetic)

Invert Emulsions 10 and 25 µ Z-Media® (synthetic)

Metric dimensions in ().

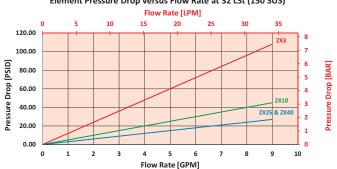
Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

C50 In-Line Filter

Element **Performance Information & Dirt Holding Capacity**

	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171				
	$\beta_x(c) \geq 200$	$\beta_{x}(c) \geq 1000$			
	<4.0	4.8	3		
	8.0	10.0)		
	19.0	24.0)		
IC	DHC				
n) Element	(gm)				
1 LZX25	1.0				
0 LZX40	0.9				
	1 LZX25	$\begin{array}{c c} \text{Using APC ca} \\ \beta_x(c) \geq 200 \\ & < 4.0 \\ \hline & 8.0 \\ \hline & 19.0 \\ \\ \text{HC} & \text{DHC} \\ \\ \text{m)} & \text{Element} & \text{(gm)} \\ \\ 1 & \text{LZX25} & 1.0 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Element Collapse Rating: 3000 psi (207 bar)


Flow Direction: Outside In

Element Nominal Dimensions: 1.4" (43 mm) O.D. x 1.7" (35 mm) long

Pressure $\triangle \boldsymbol{P}_{\text{housing}}$ **Drop** LC50 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Information Based on **Flow Rate** and Viscosity

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

Filter Model Number **Selection**

How to Build a Valid Model Number for a Schroeder LC50:

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5							
LC50	П	ROX 1	BOX 2	BOX 3	ROX 4	BOX 5	
LC50	Ш	DOX I	DOXE	DONS	DOX	DOKES	
	Ш	I CEO					
	Ш	LC30				_	

Ш	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	
	DOX	DOXE	DOKE	DOX 1	DONS	
Ш	I CEO	1	17710		c	= LC501LZX10S
Ш	LC50 -				- o	= LC301L2X103
ш						

BOX 1 BOX 2 BOX 3 BOX 4 Number of Elements **Filter Series Seal Material Element Part Number** LZX3 = 3 μ Excellement® Z-Media® (high Omit = Buna N LC50 collapse center tube) (non-bypassing only) V = Viton® LZX10 = 10 μ Excellement® Z-Media® (high collapse center tube) LZX25 = 25 μ Excellement® Z-Media® (high collapse center tube) LZX40 = 40 μ Excellement® Z-Media® (high collapse center tube) BOX 5 **Porting**

S = SAE-12P = 3/4" NPT

High-Pressure Sandwich Filter NOF30-05

Features and Benefits

■ Sandwich filter configured for D05 subplate

- Withstands high pressure surges, high static pressure loads
- 3000 psi collapse elements

12 gpm 45 *L/min* 3000 psi 210 bar

KF30

KF50

KC50

KC65

KFH50

Model No. of filter in photograph is NOF301NNZX305D5.

Type Fluid

Petroleum Based Fluids

High Water Content

Invert Emulsions

Water Glycols

	Flow Rating:	Up to 12 gpm (45 L/min) for 150 SUS (32 cSt) fluids			
N	Max. Operating Pressure:	3000 psi (210 bar)			
	Min. Yield Pressure:	10,000 psi (690 bar), per NFPA T2.6.1			
	Rated Fatigue Pressure:	Contact Factory			
	Temp. Range:	-20°F to 225°F (-29°C to 107°C)			
	Bypass Setting:	High collapse elements are standard			
	Porting Base & Cap:	Aluminum			
Element Case:		Aluminum			
	Weight of NOF30-1NN:	6.6 lbs. (3.0 kg)			
Elei	ment Change Clearance:	4.50" (115 mm)			

Appropriate Schroeder Media

3, 10 and 25 µ Z-Media® (synthetic)

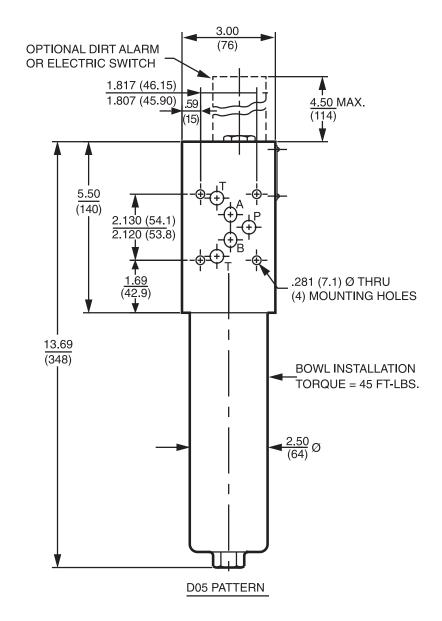
3, 10 and 25 µ Z-Media® (synthetic)

10 and 25 μ Z-Media® (synthetic)

All Z-Media® (synthetic)

Fluid Compatibility

Filter Housing **Specifications**


NOF30-05

SCHROEDER INDUSTRIES 137

20-CRZX10

NOF30-05

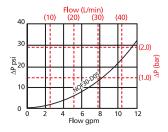
High-Pressure Sandwich Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only.

For complete dimensions please contact Schroeder Industries to request a certified print.

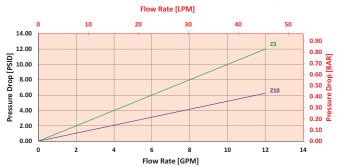
Element Performance Information & Dirt Holding Capacity


	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
NNZX3	<1.0	<1.0	<2.0	4.7	5.8
NNZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)		
NNZX3	11*		
NNZX10	13*		*Based on 100 psi
Element Collapse Rating:		3000 psid (210 bar) for high collapse (ZX) versions	terminal pressure
	Flow Direction:	Outside In	
	Element Nominal Dimensions:	1.75" (45 mm) O.D. x 8.00" (200 mm) long	

NOF30-05

 $\triangle \textbf{P}_{\text{housing}}$


NOF30-05 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle P_{element}$

1NNZX

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 5 gpm (19 L/min) for NOF301NNZX1005D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 5 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the NOF30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 5 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the NNZX10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

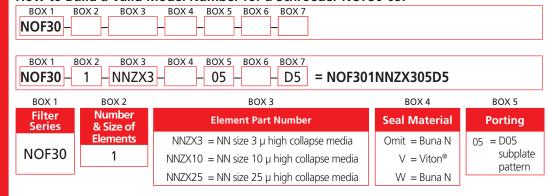
Solution:

 $\triangle \mathbf{P}_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\triangle \mathbf{P}_{\text{filter}} = 5 \text{ psi} + (3 \text{ psi} * 1.1) = 8.3 \text{ psi}$$

OR


 $\Delta \mathbf{P}_{\text{filter}}$ = .34 bar + (.21 bar * 1.1) = .57 bar

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

NOF30-05

High-Pressure Sandwich Filter

Filter Model Number Selection How to Build a Valid Model Number for a Schroeder NOF30-05:

BOX 6		BOX 7
Options		Dirt Alarm [®] Options
Omit = None	None	Omit = None
	Visual	D5 = Visual pop-up
	Visual with Thermal	D8 = Visual w/ thermal lockout
	Lockout	
		MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10
	Electrical	MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12
		MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector
	Electrical with	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout
	Thermal Lockout	MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T
		MS13DC = Supplied w/ threaded connector & light MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end)
	Electrical Visual with Thermal	MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal lockout
	Lockout	MS14DCLCT = Low current MS14DCT

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4.
- Box 4. For options V and W, all aluminum parts are anodized. Viton® is a registered trademark of DuPont Dow Elastomers.

Features and Benefits

■ Localized protection at the servo helps to eliminate downtime and protect critical applications from contamination-related servo valve failures

- Sandwich style 4-bolt design no additional lines to connect
- Designed to protect these commonly installed servo valves: Moog 761 & 62, Vickers SM4-20 and Parker BD15
- High collapse elements, rated to 3000 psi (210 bar)
- Easily applied to new and existing systems
- All steel construction

15 gpm *57 L/min* 5000 psi 345 bar

KF30

KF50

KC50

KC65

Fluid Compatibility

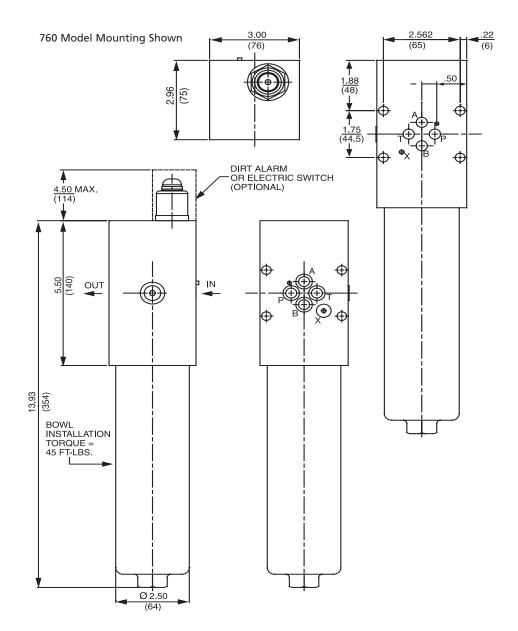
Filter Housing **Specifications**

NOF-50-760

20-CRZX10

Model No. of filter in photograph is NOF501SVZX3760.

Flow Rating:	Up to 15 gpm (57 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	5000 psi (345 bar)
Min. Yield Pressure:	15,000 psi (1034 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	4000 psi (276 bar) per NFPA T2-6.1 R2-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Non-Bypass Model:	Standard with high collapse elements
Porting Head: Element Case:	Steel Steel
Weight of NOF50-1SV:	17 lb. (7.7 kg)
Element Change Clearance:	4.50" (115 mm)


Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All Z-Media® (synthetic) **High Water Content** 3, 10 and 25 µ Z-Media® (synthetic)

Invert Emulsions

10 and 25 μ Z-Media® (synthetic)

3, 10 and 25 µ Z-Media® (synthetic) Water Glycols

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

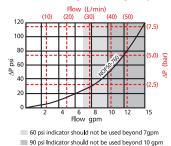
Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	ß _x ≥ 75	$B_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
SVZX3	<1.0	<1.0	<2.0	4.7	5.8
SVZX10	7.4	8.2	10.0	8.0	9.7

Element	DHC (gm)	
SVZX3	11*	
SVZX10	13*	*Based on 100

terminal pressure

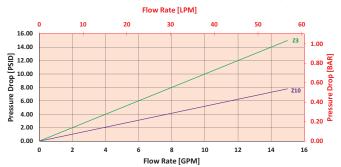
Element Collapse Rating: 3000 psid (210 bar) for high collapse (ZX) versions


Flow Direction: Outside In

Element Nominal Dimensions: 1.75" (45 mm) O.D. x 8.0" (200 mm) long

NOF50

 $\triangle \mathbf{P}_{\text{housing}}$


NOF50 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle P_{element}$

1SVZX

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 5 gpm (19 L/min) for NOF501SVZX10760D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 5 gpm. In this case, $\Delta P_{\text{housing}}$ is 15 psi (1 bar) on the graph for the NOF30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 5 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the SVZX10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

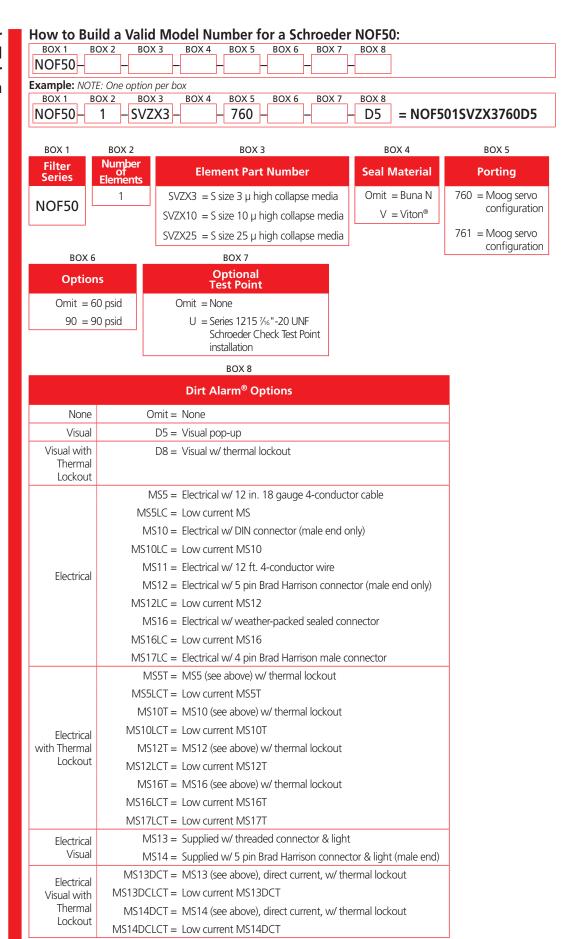
Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\Delta \mathbf{P}_{\text{housing}} = 15 \text{ psi } [1 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta P_{\text{filter}} = 15 \text{ psi} + (3 \text{ psi} * 1.1) = 18.3 \text{ psi}$


<u>OR</u>

 $\Delta P_{\text{filter}} = 1 \text{ bar} + (.21 \text{ bar} * 1.1) = 1.2 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Filter Model Number Selection

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4.
- Box 4. Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 6. Please note indicator flow limitations on pressure drop graph, previous page.

High-Pressure Sandwich Filter FOF60-30

Features and Benefits

- Sandwich filter configured for D03 subplate pattern
- Withstands high pressure surges, high static pressure loads
- 3000 psi collapse elements

12 gpm 45 L/min 6000 psi 415 bar

Filter Housing **Specifications**

Fluid

KF30

KF50

KC50

KC65

KFH50

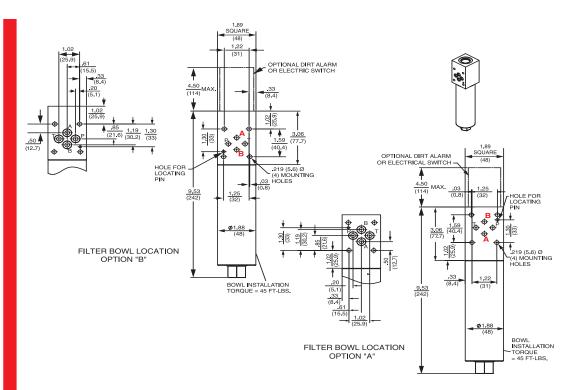
NOF30-05

Compatibility

FOF60-03

20-CRZX10

Model No. of filter in photograph is FOF601FZX303BD5.


Flow Rating:	Up to 12 gpm (45 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	6000 psi (415 bar)
Min. Yield Pressure:	26,000 psi (1790 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	4000 psi (275 bar), per NFPA T2.6.1
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Non-Bypass Model:	Available with high collapse elements
Porting Head: Element Case:	Steel Steel
Weight:	7.3 lbs. (3.3 kg)
Element Change Clearance:	4.50" (115 mm)

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All Z-Media® (synthetic)

High Water Content 3 and 10 µ Z-Media® (synthetic)

High-Pressure Sandwich Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

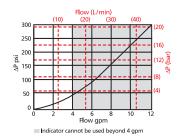
Element Performance Information & Dirt Holding Capacity

		tio Per ISO 4572/NF article counter (APC) calik			o per ISO 16889 ated per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
FZX3	<1.0	<1.0	<2.0	4.7	5.8
FZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)
FZX3	3*
FZX10	5.1

Element Collapse Rating: 3000 psid (210 bar) for high collapse (ZX) versions

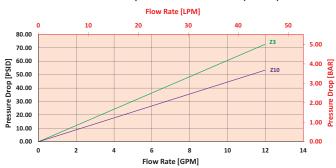
> Flow Direction: Outside In


Element Nominal Dimensions: 1.25" (30 mm) O.D. x 3.25" (85 mm) long *Based on 100 psi

terminal pressure

High-Pressure Sandwich Filter FOF60-3

 $\triangle \textbf{P}_{\text{housing}}$


FOF60-03 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle P_{element}$

FXZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 5 gpm (19 L/min) for FOF601FZX1003BD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 5 gpm. In this case, $\Delta P_{\text{housing}}$ is 60 psi (4.1 bar) on the graph for the FOF60 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 5 gpm. In this case, $\Delta P_{\text{element}}$ is 22 psi (1.5 bar) according to the graph for the FZX10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\Delta \mathbf{P}_{\text{housing}} = 60 \text{ psi } [4.1 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 22 \text{ psi } [1.5 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta P_{\text{filter}} = 60 \text{ psi} + (22 \text{ psi} * 1.1) = 64.2 \text{ psi}$

 $\Delta P_{\text{filter}} = 4.1 \text{ bar} + (1.5 \text{ bar} * 1.1) = 5.8 \text{ bar}$

Pressure Drop **Information** Based on Flow Rate and Viscosity

FOF60-30

High-Pressure Sandwich Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder FOF60-03:

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7
Example: NOTE: One option per box
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 FOF60 - 1 FZX3 - 03 - A - D5 = FOF601FZX303AD5

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	Number of Elements	Element Part Number	Seal Material	Porting
FOF60	1 FZX3 = F size 3 u hic		Omit = Buna N V = Viton®	03 = D03 subplate pattern

BOX 6				
Filter Bowl Location				
A = Bowl adjacent to Port "A"				
B = Bowl adjacent to Port "B"				
(Refer to drawing on page 140.)				

BOX 7						
Dirt Alarm [®] Options						
None	Omit =	None				
Visual	D5 =	Visual pop-up				
Visual with Thermal Lockout	D8 =	Visual w/ thermal lockout				
	MS5 =	Electrical w/ 12 in. 18 gauge 4-conductor cable				
	MS5LC =	Low current MS				
	MS10 =	Electrical w/ DIN connector (male end only)				
	MS10LC =	Low current MS10				
Electrical	MS11 =	Electrical w/ 12 ft. 4-conductor wire				
Lieculcai	MS12 =	Electrical w/ 5 pin Brad Harrison connector (male end only)				
	MS12LC =	Low current MS12				
	MS16 =	Electrical w/ weather-packed sealed connector				
	MS16LC =	Low current MS16				
	MS17LC =	Electrical w/ 4 pin Brad Harrison male connector				
	MS5T =	MS5 (see above) w/ thermal lockout				
	MS5LCT =	Low current MS5T				
	MS10T =	MS10 (see above) w/ thermal lockout				
Electrical	MS10LCT =	Low current MS10T				
with Thermal	MS12T =	MS12 (see above) w/ thermal lockout				
Lockout	MS12LCT =	Low current MS12T				
	MS16T =	MS16 (see above) w/ thermal lockout				
	MS16LCT =	Low current MS16T				
	MS17LCT =	Low current MS17T				
Electrical	MS13 =	Supplied w/ threaded connector & light				
Visual	MS14 =	Supplied w/ 5 pin Brad Harrison connector & light (male end)				
Electrical	MS13DCT =	MS13 (see above), direct current, w/ thermal lockout				
Visual with	MS13DCLCT =	Low current MS13DCT				
Thermal Lockout	MS14DCT =	MS14 (see above), direct current, w/ thermal lockout				
LOCKOUL	MS14DCLCT =	Low current MS14DCT				

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4.
- Box 4. Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 7. Dirt Alarm® cannot be used beyond 4 gpm. Filters ordered without a Dirt Alarm do not include a machined indicator port. Therefore, one cannot be added at a later date.

Manifold Filter Kit

Features and Benefits

■ Allows for effective filtration in customer's manifold

20 gpm 75 L/min 3000 psi 210 bar

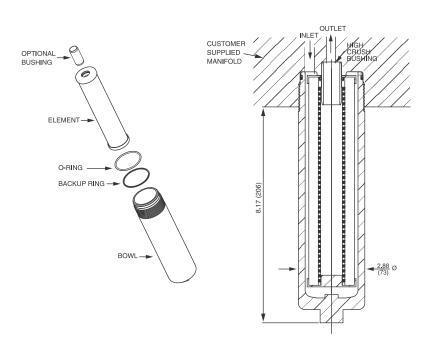
KF30

KF50

KC50

KC65

KFH50


NMF30

20-CRZX10


Model No. of filter in photograph is NMF301NNZX10.

Flow Rating:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	3000 psi (210 bar)*
Min. Yield Pressure:	10,000 psi (690 bar)*, per NFPA T2.6.1
Rated Fatigue Pressure:	2400 psi (185 bar)*, per NFPA T2.6.1
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Element Case:	Aluminum
Element Change Clearance:	4.50" (115 mm)
*Only with manifold material properties	s equivalent to aluminum 6061-T651

Type Fluid Petroleum Based Fluids **High Water Content**

Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Filter Housing **Specifications**

Fluid Compatibility

Manifold Filter Kit

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ration Using APC calibra	Dirt Holding Capacity	
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$	gm
NNZX3	<1.0	<1.0	<2.0	4.7	5.8	11*
NNZX10	7.4	8.2	10.0	8.0	9.8	13*

 Element
 DHC (gm)

 NNZX3
 11*

 NNZX10
 13*

Element Collapse Rating: 3000 psid (210 bar)

Flow Direction: Outside In

Element Nominal Dimensions: 1.75" (45 mm) O.D. x 8.00" (200 mm) long

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder NMF30:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	Number of Elements	Element Part Number	Seal Material	Bushing
NMF30	1	NNZX3 = NN size 3 μ high collapse media	Omit = Buna N V = Viton®	Omit = Included N = Not
		NNZX10 = NN size 10 μ high collapse media NNZX25 = NN size 25 μ high collapse media	\// = Rupa N	included

NOTES:

Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4.

Box 4. For options V and W, all aluminum parts are anodized. Viton® is a registered trademark of DuPont Dow Elastomers.

Manifold Filter Kit RMF60

Features and Benefits

■ Allows for effective filtration in customer's manifold

30 gpm 115 L/min 6000 psi 415 bar

Filter

Fluid

Housing

Specifications

Compatibility

KF30

KF50

KC50

KC65

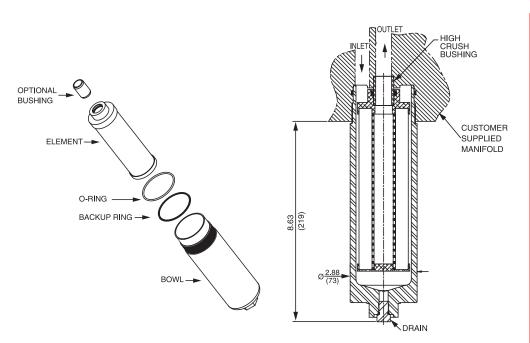
KFH50

RMF60

20-CRZX10

Model No. of filter in photograph is RMF608RZX10.

Up to 30 gpm (115 L/min) for 150 SUS (32 cSt) fluids


Rated Fatigue Pressure:

Element Change Clearance: 3.0" (75 mm)

Type Fluid

Petroleum Based Fluids

High Water Content

Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

^{*}Only with manifold material properties equivalent to AISI 1018 C.R.S.

Manifold Filter Kit

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
NNZX3	<1.0	<1.0	<2.0	4.7	5.8
NNZX10	7.4	8.2	10.0	8.0	9.8

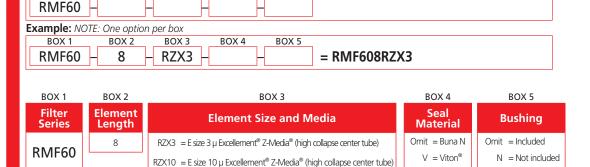
Element DHC (gm)

BOX 2

BOX 1

Element Collapse Rating: 3000 psid (210 bar)

Flow Direction: Outside In


BOX 3

Element Nominal Dimensions: 2.18" (55mm) O.D. x 8.15" (206 mm) long

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder RMF60:

BOX 4

RZX25 = E size 25 μ Excellement® Z-Media® (high collapse center tube)

H = EPR

BOX 5

NOTES:

Box 2: Replacement element part numbers are a combination of Boxes 2, 3, and 4. Example: 8RZX3V

Box 4. Viton® is a registered trademark of DuPont Dow Elastomers.

Cartridge Element 14-CRZX10

Features and Benefits (14-CRZX10)

- Cartridge filters are designed to be mounted directly in the manifold
- Withstands high pressure surges—3000 psi (210 bar) collapse rating

6 gpm 3000 psi 210 bar

Max. Operating Pressure: 3000 psi (210 bar)

> Temp. Range: -20°F to 225°F (-29°C to 107°C)

> > All Z-Media® (synthetic) 3 and 10 µ Z-Media® (synthetic)

Appropriate Schroeder Media

14-CRZX10: 4.50" (115 mm) **Element Change Clearance:**

Type Fluid

Petroleum Based Fluids

High Water Content

Element **Performance** Information & **Dirt Holding**

Capacity

Filter

Model

Number

Selection

KC50

KC65

14-CRZX10

Filter Housing **Specifications** Fluid Compatibility

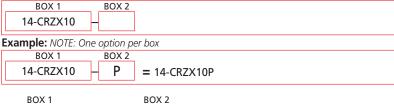
O-RING BOSS PLUG (OPTIONAL) P/N A-601-14 25.10 25.32 DATE CODE 2.82 2.76 71.6 70.1 81.3 79.5 3.20 3.13 SECTION A-A

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

·	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				per ISO 16889
Element			$\beta_x \ge 200$	$\beta_{x}(c) \geq 200$	$\beta_{x}(c) \geq 1000$
ZX10	7.4	8.2	10.0	8.0	9.8

Contact factory for other media options.


Element DHC (gm)

> Element Collapse Rating: 3000 psid (210 bar) for high collapse (ZX) versions

> > Flow Direction: Outside In

Element Nominal Dimensions:

How to Build a Valid Model Number for a Schroeder 14-CRZX10:

Filter **Number of Elements** Series Omit = No Plug 14-CRZX10 P = Plug

NOTES:

Box 2: Replacement element part numbers are a combination of Boxes 2, 3, and 4. Example: 8RZX3V

Box 4. Viton® is a registered trademark of DuPont Dow Flastomers.

CRZX10 Cartridge Element

12 gpm 45 L/min 3000 psi

Features and Benefits (20-CRZX10)

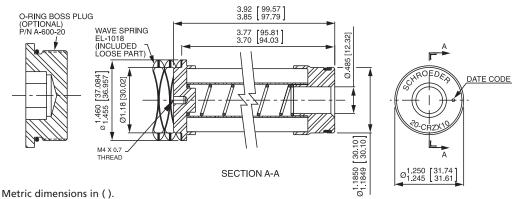
- Cartridge filters are designed to be mounted directly in the manifold
- Withstands high pressure surges-3000 psi (210 bar) collapse rating

Filter Housing **Specifications**

Max. Operating Pressure: 3000 psi (210 bar)

> -20°F to 225°F (-29°C to 107°C) Temp. Range:

Element Change Clearance: 20-CRZX10: 3.50" (90 mm)


Fluid Compatibility

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All Z-Media® (synthetic)

3 and 10 µ Z-Media® (synthetic) **High Water Content**

Element **Performance Information & Dirt Holding Capacity**

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element **Performance Information & Dirt Holding Capacity**

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ration Using APC calibrates	per ISO 16889 ted per ISO 11171
Element	$\beta_x \geq 75$	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_{x}(c) \geq 1000$
ZX10	7.4	8.2	10.0	8.0	9.8

Contact factory for other media options. Element DHC (gm)

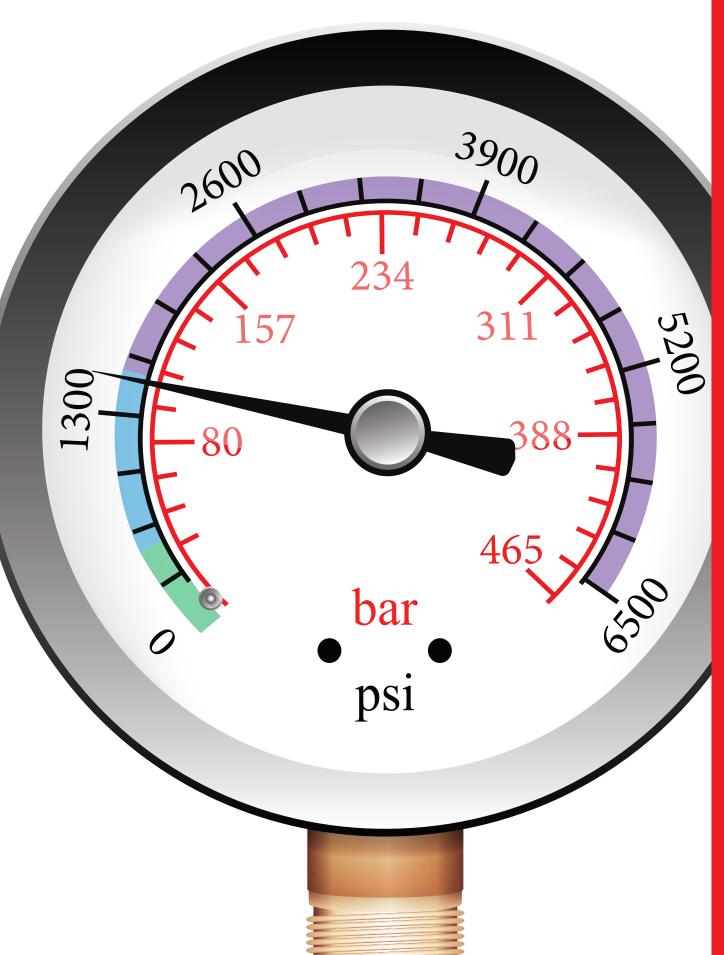
> Element Collapse Rating: 3000 psid (210 bar) for high collapse (ZX) versions

> > Flow Direction: Outside In *Based on 100 psi terminal pressure

Element Nominal Dimensions:

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder 20-CRZX10:



NOTES:

Box 2: Replacement element part numbers are a combination of Boxes 2, 3, and 4. Example: 8RZX3V

Box 4. Viton® is a registered trademark of DuPont Dow Elastomers.

BOX 1 BOX 2 **Filter Number of Elements** Series Omit = No Plug 20-CRZX10 P = Plug

Section 4 Medium Pressure Filters Selection Guide

		Pressure psi (bar)	Flow gpm (L/min)	Element Length/Size	Page
	Top-Ported Medium Pre	essure Return Lir	ne Filters		
	GH	725 (50)	35 (130)	6G, 9G	155
	RLT	1000 (69)	70 (265)	9V, 14V	161
psi)	KF5	500 (35)	100 (380)	K	165
200	SRLT	1400 (100)	25 (100)	6R	169
to 1	Base-Ported Medium Pr	essure Filters			
dn)	К9	900 (60)	100 (380)	K, KK, 27K	173
Filters	2K9	900 (60)	100 (380)	K, KK, 27K	177
	3K9	900 (60)	100 (380)	K, KK, 27K	177
Pressure	QF5	500 (35)	300 (1135)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	181
Pre	QF5i	500 (35)	120 (454)	16QCLQF, 39QCLQF	185
ium	3QF5	500 (35)	300 (1135)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	189
Medium	QFD5	500 (35)	350 (1325)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	193
	QF15	1500 (100)	450 (1700)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	197
	QLF15	1500 (100)	500 (1900)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	201
	SSQLF15	1500 (100)	500 (1900)	16Q, 16QPML, 39Q, 39QPML	205

Features and Benefits

Variety of differential indicator port options (visual and electrical indicators)

- Leak proof bar indicator, rugged visual indicator with protective aluminum shield is standard
- Proprietary bowl to element seal minimizes potential leakage point by use of one seal
- Cartridge style element (non spin-on) that is proprietary and patented with integrated bypass valve features
- Wide variety of media grades that can be application specific
- Light weight bowl design with replaceable element minimizes landfill waste
- Mounting interchangeability with competitor's
- The inherent capability to pre-print the perforated outer element wrap provides a branding solution that helps to capture after-market replacement element sales
- Same day shipment model available (GH6 & GH9)

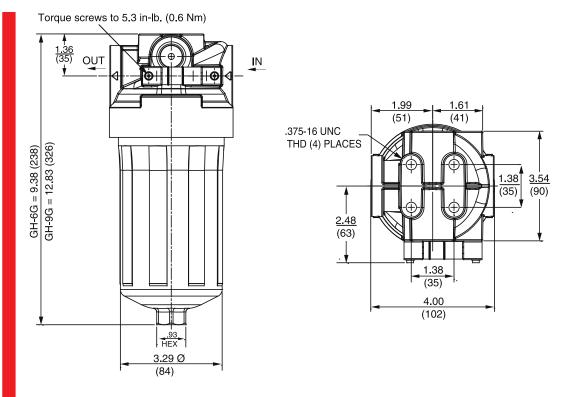
Part of Schroeder Industries Energy Savings Initiative

35-112 gpm 130-425 L/min 500-725 psi 35-50 bar KF5

K9

Model No. of filters in photograph are GH6, GH9, GH11, and GH14.

	GH6	GH9	GH11	GH14
Flow Rating: (150 SUS (32 cSt) fluids)	Up to 35 gpm (130 L/min)	Up to 35 gpm (130 L/min)	Up to 87 gpm (325 L/min)	Up to 112 gpm (425 L/min)
Max. Operating Pressure:	725 psi (50 bar)	725 psi (50 bar)	500 psi (35 bar)	500 psi (35 bar)
Min. Yield Pressure:	2600 psi (179 bar)	2600 psi (179 bar)	2700 psi (186 bar)	2700 psi (186 bar)
Rated Fatigue Pressure:	725 psi (50 bar)	725 psi (50 bar)	500 psi (35 bar)	500 psi (35 bar)
Temp. Range:	-20°F to 225°F (-29°C to 107°C)	-20°F to 225°F (-29°C to 107°C)	-22°F to 212°F (-30°C to 100°C)	-22°F to 212°F (-30°C to 100°C)
Bypass Setting:	25 psi (1.7 bar) standard 50 psi (3.5 bar) optional Non-Bypassing	25 psi (1.7 bar) standard 50 psi (3.5 bar) optional Non-Bypassing	43 psi (3 bar) standard 87 psi (6 bar) optional Non-Bypassing	43 psi (3 bar) standard 87 psi (6 bar) optional Non-Bypassing
Porting Head:	Cast Aluminum	Cast Aluminum	Cast Aluminum	Cast Aluminum
Element Case:	Aluminum	Aluminum	Aluminum	Aluminum
Weight:	3.2 lbs (1.4 kg)	3.8 lbs (1.7 kg)	8.0 lbs (3.6 kg)	10.0 lbs (4.5 kg)
Element Change Clearance:	2" (50 mm)	2" (50 mm)	7.4" (187 mm)	7.4" (187 mm)


Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All media (synthetic) and H media (Hydraspin) Fluid Compatibility

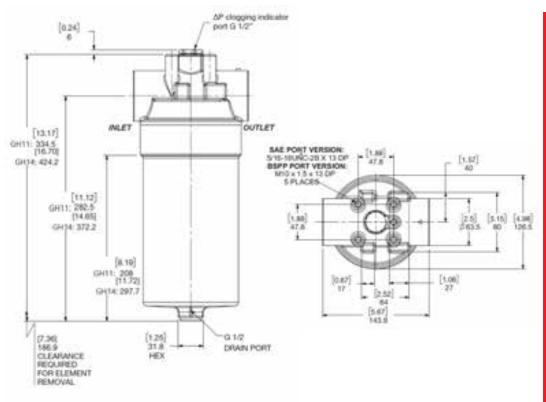
Filter Housing **Specifications**

SCHROEDER INDUSTRIES 155

Dimensions (GH6 & GH9)

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity


			tio Per ISO 4572/N article counter (APC) ca		Filtration Ratio Using APC calibrate	•
Media Type	Element	β _X ≥ 75	β _X ≥ 100	$\beta_X \ge 200$	β _X (c) ≥ 200	β _χ (c) ≥ 1000
Resin Impregnated Cellulose Media	6G3/9G3 6G10/9G10	6.8 15.5	7.5 16.2	10.0 18.0	N/A N/A	N/A N/A
Traditional Excellement® Z-Media®	6GZ3 / 9GZ3 6GZ5 / 9GZ5 6GZ10 / 9GZ10 6GZ25 / 9GZ25	<1.0 2.5 7.4 18.0	<1.0 3.0 8.2 20.0	<2.0 4.0 10.0 22.5	<4.0 4.8 8.0 19.0	4.8 6.3 10.0 24.0
Hydraspin H Media, designed to specifically reduce filter pressure drop	6GH10/ 9GH10	N/A	N/A	N/A	10.6	13.0
Media Type	Element	DH	C (gm)			
Resin Impregnated Cellulose Media	6G3/9G3 6G10/9G10		8/30 5/25			
Traditional Excellement® Z-Media®	6GZ3 / 9GZ3 6GZ5 / 9GZ5 6GZ10 / 9GZ10 6GZ25 / 9GZ25	24	0/51 1.5/42 1/49 4/58			
Hydraspin H Media, designed to specifically reduce filter pressure drop	6GH10/9GH10	1	2/20			

Element Collapse Rating: 250 psid (17.2 bar) for standard and non-bypassing elements

Flow Direction: Outside In

Element Nominal 6G: 3.25" (82 mm) O.D. x 5.7" (144 mm) long Dimensions: 9G: 3.25" (82 mm) O.D. x 9.0" (229 mm) long

GH

Dimensions (GH11 & GH14)

Metric dimensions in ().

		Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Media Type	Element	β _χ ≥ 75	β _X ≥ 100	$\beta_X \ge 200$	β _X (c) ≥ 200	β _X (c) ≥ 1000	
Traditional Excellement® Z-Media®	11GZ3/14GZ3 11GZ5/14GZ5 11GZ10/14GZ10 11GZ25 /14GZ25		Consult Factory		Consult I	- actory	
Media Type	Element		DHC (gm)				

Contact Factory

Holding Capacity

Element Performance Information & Dirt

Element Collapse Rating: 290 psid (17.2 bar) for standard and non-bypassing elements

Flow Direction: Outside In

Traditional

Z-Media®

Excellement®

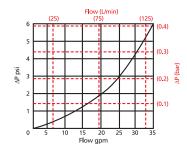
11GZ3/14GZ3

11GZ5/14GZ5

11GZ10/14GZ10

11GZ25/14GZ25

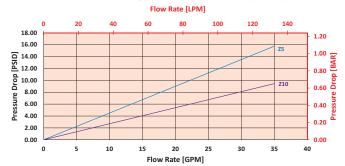
Element Nominal 11G: 3.25" (82 mm) O.D. x 5.7" (144 mm) long Dimensions: 14G: 3.25" (82 mm) O.D. x 9.0" (229 mm) long

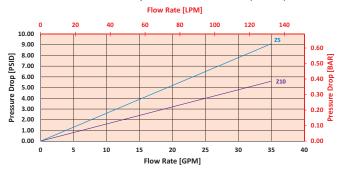

GH

HydraSPIN Filter Series

Pressure
Drop
Information
(GH6 & GH9)
Based on
Flow Rate
and Viscosity

$\triangle P_{housing}$


GH $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle \textbf{P}_{\text{element}}$

6GZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

9GZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$$

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for GH6GZ10S12L using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.5 psi (0.10 bar) on the graph for the GH housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 4 psi (0.27 bar) according to the graph for the 6GZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\Delta \mathbf{P}_{\text{housing}} = 1.5 \text{ psi } [0.10 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 4 \text{ psi } [0.27 \text{ bar}]$

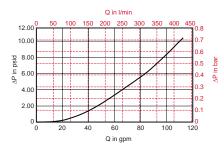
 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 1.5 \text{ psi} + (4 \text{ psi} * 1.1) = 5.9 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = 0.10 \text{ bar} + (0.27 \text{ bar} * 1.1) = 0.40 \text{ bar}$

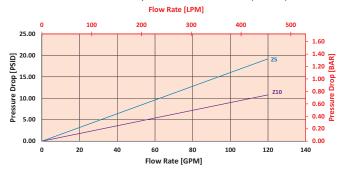
Note:


If your element is not graphed, you can obtain your $\Delta P_{element}$ by multiplying the flow rate by the following: $\Delta P_{element}$ Factors $\times VP$ (Visc. Factor) $\Delta P_{element}$ Factors @ 150 SUS (32 cSt)

Cicilicité			,
Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
6G3	0.60	9G3	0.35
6G10	0.40	9G10	0.24
6G25	0.08	9G25	0.05
6GH10	C/F	9GH10	C/F
6GZ3	0.60	9GZ3	0.35
6GZ25	C/F	9GZ25	C/F

GH

 $\triangle \mathbf{P}_{\text{housing}}$


GH $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \textbf{P}_{\text{element}}$

11GZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

14GZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$$

Exercise:

Determine ΔP_{filter} at 60 gpm (227.4 L/min) for GH11GZ10S24VA using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 60 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (0.21 bar) on the graph for the GH housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 60 gpm. In this case, $\Delta P_{\text{element}}$ is 5 psi (0.34 bar) according to the graph for the 11GZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\triangle \mathbf{P}_{\text{housing}} = 3 \text{ psi } [0.21 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 5 \text{ psi } [0.34 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

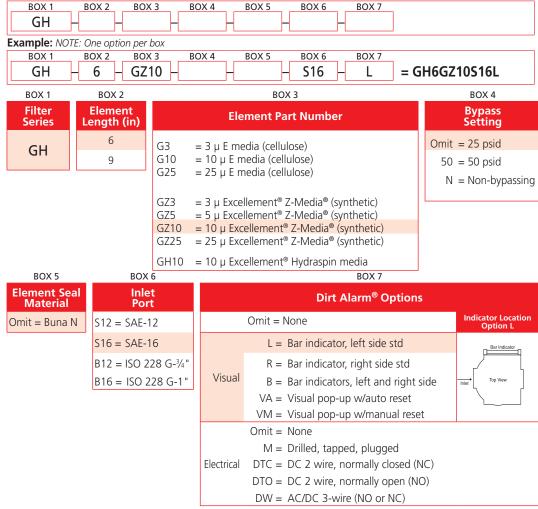
 $\Delta \mathbf{P}_{\text{filter}} = 3 \text{ psi} + (5 \text{ psi} * 1.1) = 8.5 \text{ psi}$

<u>OR</u>

 $\Delta P_{\text{filter}} = 0.21 \text{ bar} + (0.34 \text{ bar} * 1.1) = 0.58 \text{ bar}$

Pressure
Drop
Information
(GH11 & GH14)
Based on
Flow Rate
and Viscosity

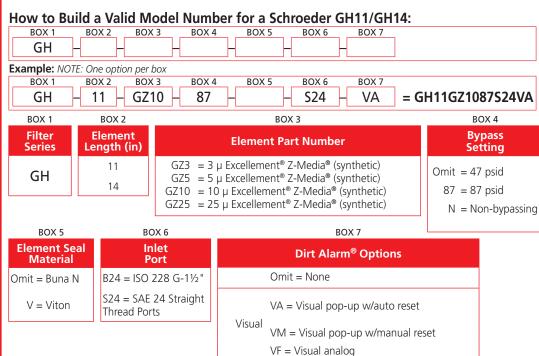
Note: If your element is not graphed, you can obtain your $\Delta P_{\text{element}}$ by multiplying the flow rate by the following: $\Delta P_{\text{element}}$ Factors $\times VP$ (Visc. Factor) $\Delta P_{\text{element}}$ Factors @ 150 SUS (32 cSt)


Ele.	$\triangle \mathbf{P}$
11GZ3	0.21
11GZ25	0.06
14GZ3	0.14
14GZ25	0.04

How to Build a Valid Model Number for a Schroeder GH6/GH9:

Filter Model Number Selection (GH6 & GH9

Highlighted product eligible for wickbelivery



Filter Model Number Selection (GH11 & GH14)

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Replacement elements contain bypass. For 50 psid setting or non-bypassing version, element part number includes suffix. Examples: 11GZ1050, 14GZ10N.

Box 7. VA and VM indicators are available with 50 psid bypass element only.

Electrical

EC = Electrical switch - SPDT

ED = Electrical switch and LED light - SPDT

Features and Benefits

- Durable, compact design
- Quick and easy cartridge element changeouts
- Available in 9" and 14" element lengths
- Lightweight at 8 pounds
- Offered in pipe, SAE straight thread, flange and ISO 228 porting
- Available with NPTF inlet and outlet female test ports
- Various Dirt Alarm® options
- Same day shipment model available

70 gpm 265 L/min 1000 psi 69 bar

K9

Flow Rating: Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids for P20, S20, & B20 porting

Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids for P16, S16, F16, F20

& B16 porting

Max. Operating Pressure: 1000 psi (69 bar)

Min. Yield Pressure: 4200 psi (290 bar), per NFPA T2.6.1

Rated Fatigue Pressure: 415 psi (29 bar), per NFPA T2.6.1-R1-2005

Temp. Range: -20°F to 225°F (-29°C to 107°C)

Bypass Setting: Cracking: 40 psi (2.8 bar) for all porting

Full Flow: 57 psi (3.9 bar) for P20 & S20 porting

Full Flow: 75 psi (5.2 bar) for P16, S16, F16 & F20 porting

Porting Head: Aluminum

Element Case: Aluminum

Weight of RLT-9V: 6.7 lbs. (3.0 kg) Weight of RLT-14V: 8.0 lbs. (3.6 kg)

Element Change Clearance: 9V & 14V: 2.75" (70 mm)

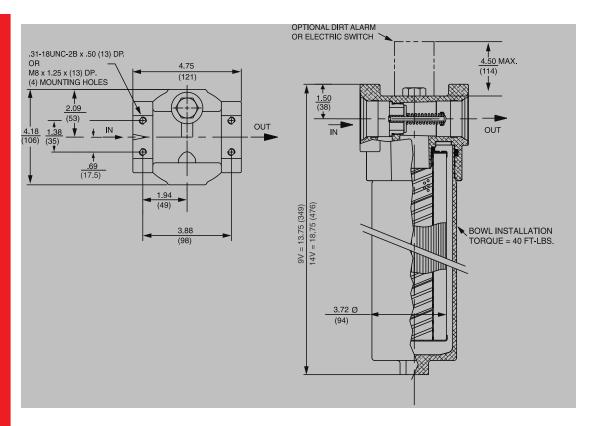
Filter Housing **Specifications**

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E media (cellulose) and Z-Media® (synthetic)

High Water Content All Z-Media® (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic)


Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation

Skydrol® 3, 5, 10 and 25 µ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

Fluid Compatibility

Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

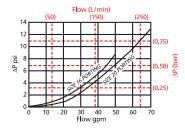
		atio Per ISO 4572/NF particle counter (APC) cali	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _X ≥ 75	B _X ≥ 100	$\beta_{\chi} \ge 200$	β _X (c) ≥ 200	$\beta_{X}(c) \geq 1000$
9VZ1/14VZ1	<1.0	<1.0	<1.0	<4.0	4.2
9VZ3/14VZ3	<1.0	<1.0	<2.0	<4.0	4.8
9VZ5/14VZ5	2.5	3.0	4.0	4.8	6.3
9VZ10/14VZ10	7.4	8.2	10.0	8.0	10.0
9VZ25/14VZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	
9VZ1	55	14VZ1	102	
9VZ3	57	14VZ3	105	
9VZ5	62	14VZ5	115	
9VZ10	52	14VZ10	104	
9VZ25	48	14VZ25	94	
9VZ10	52	14VZ10	104	

Element Collapse Rating: 150 psid (10 bar)

500 psid (34.5 bar) for hydrostatic high collapse (9V5Z and 14V5Z) version

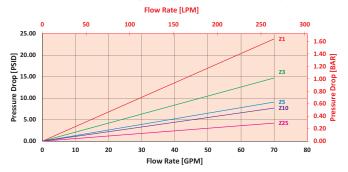
Flow Direction: Outside In

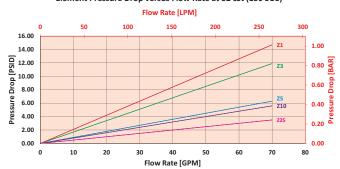

Element Nominal Dimensions: 9V: 3.0" (75 mm) O.D. x 9.5" (240 mm) long

14V: 3.0" (75 mm) O.D. x 14.5" (370 mm) long

RLT

 $\triangle \mathbf{P}_{\text{housing}}$


RLT $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle \textbf{P}_{\text{element}}$

9VZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

14VZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 40 gpm (151.6 L/min) for RLT9VZ10S20D5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 40 gpm. In this case, $\Delta P_{\text{housing}}$ is 4.5 psi (.31 bar) on the graph for the RLT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 40 gpm. In this case, $\Delta P_{\text{element}}$ is 6 psi (.415 bar) according to the graph for the 9VZ10 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 4.5 \text{ psi } [.31 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 4 \text{ psi } [.27 \text{ bar}]$

 $V_f = 175 \text{ SUS } (37.2 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.2$

$$\Delta P_{\text{filter}} = 4.5 \text{ psi} + (4 \text{ psi} * 1.2) = 9.3 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .31 \text{ bar} + (.27 \text{ bar} * 1.2) = .63 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta \textbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \textbf{P}_{f.} \text{ Plug this variable into the overall pressure drop equation.}$

Ele.	∆P	Ele.	∆P
9V3	0.32	14V3	0.19
9V10	0.24	14V10	0.15

Filter Model Number Selection

Highlighted product eligible for QuickDelivery

How to Build a Valid Model Number for a Schroeder RLT:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	
Example: NOTE	: One option	per box					
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	
RLT -	9 –	· VZ10 –	_	S20 –	D5 –		= RLT9VZ10S20D5

BOX 1 BOX 2 Element Length (in) Filter Series 9 **RLT** 14

Element Size and Media VZ1 = V size 1 μ Excellement® Z-Media® (synthetic) = V size 3 μ Excellement® Z-Media® (synthetic)

= V size 5 μ Excellement® Z-Media® (synthetic) = V size 10 μ Excellement® Z-Media® (synthetic) VZ10

BOX 3

VZ25 = V size 25 μ Excellement® Z-Media® (synthetic) VW = V size W media (water removal)

V5Z3 = V size 3 μ Excellement® media, 500 psid collapse

V5Z5 = V size 5 μ Excellement® media, 500 psid collapse V5Z10 = V size 10 μ Excellement® media, 500 psid collapse

V5Z25 = V size 25 μ Excellement® media, 500 psid collapse

Water Service Element Options

 $VM60 = V \text{ size } 60 \mu \text{ M media (reusable metal)}$

VM150 = V size 150 µ M media (reusable metal) VM260 = V size 260 μ M media (reusable metal)

BOX 6 BOX 5

Electrical

BOX 7

Omit = None

Additional Options

L = Two 1/4"

NPTF inlet

and outlet

test ports

female

BOX 4

Seal

Material

Omit = Buna N

H = EPR

V = Viton®

Compatibility

H.5 = Skydrol®

Porting Options

RLTN

(Non-bypassing: requires V5Z

high collapse elements)

WRLT

(Water)

P16 = 1" NPTF P20 = 11/4" NPTF

S16 = SAE-16

S20 = SAE-20

 $F20 = 1\frac{1}{4}$ " SAE 4-bolt flange Code 61

B20 = ISO 228 G-11/4"

B16 = ISO 228 G-1"

	Dirt Alarm [®] Options
None	Omit = None
Visual	D5 = Visual pop-up
	D8 = Visual w/ thermal lockout
	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable
	MS5LC = Low current MS5
	MS10 = Electrical w/ DIN connector (male end only)
	MS10LC = Low current MS10
	MS11 = Electrical w/ 12 ft. 4-conductor wire

MS12 = Electrical w/ 5 pin Brad Ḥarrison connector (male end only)

MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector

MS16LC = Low current MS16

MS17LC = Electrical w/ 4 pin Brad Harrison male connector

MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T

MS10T = MS10 (see above) w/ thermal lockout

Electrical MS10LCT = Low current MS10T with

MS12T = MS12 (see above) w/ thermal lockout Thermal MS12LCT = Low current MS12TLockout

MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T

MS17LCT = Low current MS17T

MS13 = Supplied w/ threaded connector & light Electrical MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end) Visual

MS13DCT = MS13 (see above), direct current, w/ thermal lockout Electrical

Visual MS13DCLCT = Low current MS13DCT with

MS14DCT = MS14 (see above), direct current, w/ thermal lockout Thermal Lockout MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Example: 9VZ10V
- Box 3. E media elements are only available with Buna N seals. V5Z10 and V5Z25 are only available with RLTN 9".
- Box 4. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered

trademark of Solutia Inc.

Box 5. B porting supplied with metric mounting holes.

Model No. of filter in photograph is KF51KZ10SD5.

Features and Benefits

- Meets HF4 automotive standard
- Offered in pipe, SAE straight thread, flange and ISO 228 porting
- Available with NPTF inlet and outlet female test ports
- KFN5 non-bypass version with high collapse elements also available
- Various Dirt Alarm® options
- Allows consolidation of inventoried replacement elements by using K-size elements
- Also available with DirtCatcher® elements (KD & KKD)
- G Available with quality-protected GeoSeal® Elements (GKF5)

100 gpm 380 Ľ/min 500 psi 35 bar

KF5

K9

Specifications

Flow Rating: Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids

Max. Operating Pressure: 500 psi (35 bar)

Min. Yield Pressure: 1500 psi (100 bar), per NFPA T2.6.1 Rated Fatigue Pressure: 300 psi (35 bar), per NFPA T2.6.1-2005

Temp. Range: -20°F to 225°F (-29°C to 107°C)

Bypass Setting: Cracking: 40 psi (2.8 bar)

Full Flow: 61 psi (4.2 bar)

Porting Head: Grey Cast Iron

Element Case: Steel

Weight of KF5-1K: 23.2 lbs. (10.5 kg)

Element Change Clearance: 2.0" (51 mm)

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® media (synthetic)

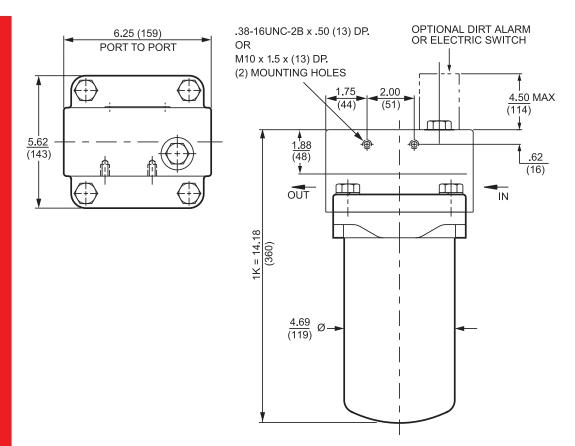
High Water Content All Z-Media® (synthetic), 3, 5 and 10 μ ASP® media (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic), 10 μ ASP® media (synthetic)

Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic), 3, 5 and 10 μ ASP® media (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and 3 and 10 μ

E media (cellulose) with H (EPR) seal designation, 3, 5 and 10 μ ASP® media (synthetic)


Skydrol[®] 3, 5, 10 and 25 μ Z-Media[®] (synthetic) with H.5 seal designation (EPR seals & stainless steel wire mesh in element, and light oil coating on housing exterior), 3, 5 and 10 µ ASP®

media (synthetic)

Fluid Compatibility

Filter

Housing

Metric dimensions in ().

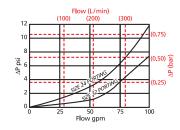
Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

		ntio Per ISO 4572/N particle counter (APC) ca	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _X ≥ 75	B _X ≥ 100	$\beta_{\chi} \ge 200$	$\beta_{X}(c) \geq 200$	$\beta_{X}(c) \ge 1000$
KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5	2.5	3.0	4.0	4.8	6.3
KZ10	7.4	8.2	10.0	8.0	10.0
KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3	N/A	N/A	N/A	4.0	4.8
KZW5	N/A	N/A N/A N/A		5.1	6.4
KZW10	N/A	N/A	N/A	6.9	8.6
KZW25	N/A	N/A	N/A	15.4	18.5

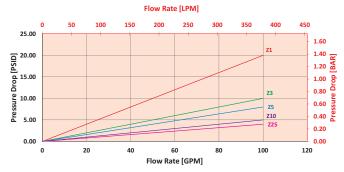
Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KZW1	61	KDZ1	89
KZ3/KAS3	115	KZW3	64	KDZ3	71
KZ5/KAS5	119	KZW5	63	KDZ5	100
KZ10/KAS10	108	KZW10	67	KDZ10	80
KZ25	93	KZW25	79	KDZ25	81

Element Collapse Rating: 150 psid (10 bar) for standard elements


Flow Direction: Outside In

Element Nominal Dimensions: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KF5


 $\triangle \textbf{P}_{\text{housing}}$

KF5 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \textbf{P}_{\text{element}}$

KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 50 gpm (189.5 L/min) for KF51KZ10S24D5 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the KF5 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 50 gpm. In this case, $\Delta P_{\text{element}}$ is 2 psi (.14 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

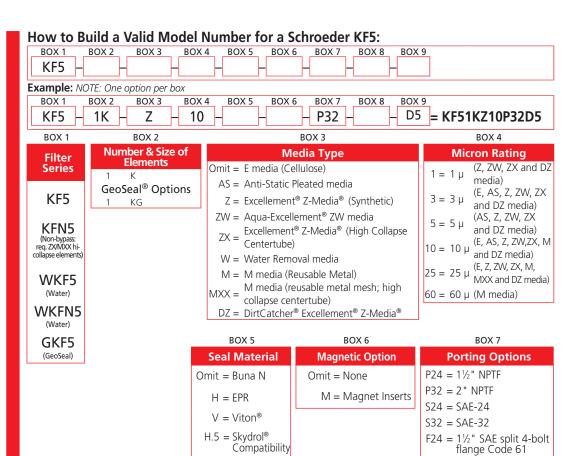
 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 2 \text{ psi } [.14 \text{ bar}]$

 $V_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$

 $\Delta \mathbf{P}_{\text{filter}} = 3 \text{ psi} + (2 \text{ psi} * 1.3) = 5.6 \text{ psi}$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .21 \text{ bar} + (.14 \text{ bar} * 1.3) = .40 \text{ bar}$


Pressure Drop Information Based on Flow Rate and Viscosity

Vloto:

If your element is not graphed, use the following equation: $\Delta \textbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \textbf{P}_{\textbf{f}}. \text{ Plug this variable into the overall pressure drop equation.}$

Ele.	$\triangle \mathbf{P}$
K3	0.25
K10	0.09
K25	0.02
KAS3	0.10
KAS5	0.08
KAS10	0.05
KDZ1	0.24
KDZ3	0.12
KDZ5	0.10
KDZ10	0.06
KDZ25	0.04
KZW1	0.43
KZW3	0.32
KZW5	0.28
KZW10	0.23
KZW25	0.14

Filter Model Number Selection

Compatibility

BOX 8

BOX 9

B24 = ISO 228 G-11/2"

Test Port Options Omit = None $L = Two \frac{1}{4}$ NPTF inlet and outlet female test ports

	Dirt Alarm [®] Options
	Omit = None
Visual	D = Pointer D5 = Visual pop-up
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout
Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector
Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS16LCT = Low current MS16T MS17LCT = Low current MS17T
Electrical Visual	MS = Cam operated switch w/ ½" conduit female connection MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)
Electrical Visual with Thermal	MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal lockout

Lockout MS14DCLCT = Low current MS14DCT

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5. Example: KZ10V High collapse media only available with KFN5.

Box 5. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol® is a registered trademark of Solutia Inc.

Box 7. B porting supplied with metric mounting holes.

Medium Pressure Filter SRLT

Features and Benefits

■ Smaller, compact version of the RLT

- Quick and easy cartridge element changeouts
- Lightweight at 3 pounds
- Offered in pipe, SAE straight thread and ISO 228 porting
- Available with NPTF inlet and outlet female test ports
- Various Dirt Alarm® options
- Same day shipment model available

25 gpm 100 L/min 1400 psi 100 bar

KF5

SRLT

K9

Flow Rating: Up to 25 gpm (100 L/min) for 150 SUS (32 cSt) fluids

Max. Operating Pressure: 1400 psi (100 bar)

Min. Yield Pressure: 4000 psi (276 bar), per NFPA T2.6.1

Rated Fatigue Pressure: 750 psi (52 bar) per NFPA T2.6.1-R1-2005

Temp. Range: -20°F to 225°F (-29°C to 107°C)

Bypass Setting: Cracking: 40 psi (2.8 bar)

Full Flow: 55 psi (3.8 bar)

Porting Head: Aluminum Element Case: Aluminum

Weight of SRLT-6R: 3.0 lbs. (1.4 kg) Weight of SRLT-12R: 4.5 lbs. (2 kg)

Element Change Clearance: 2.75" (70 mm)

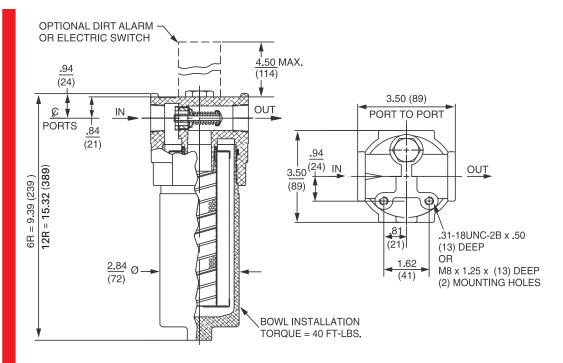
Filter Housing **Specifications**

Type Fluid	Appropriate	Schroeder	Media
------------	-------------	-----------	-------

Petroleum Based Fluids All E media (cellulose) and Z-Media® (synthetic)

High Water Content All Z-Media® (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic)


Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation

3, 5, 10 and 25 µ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

Fluid Compatibility

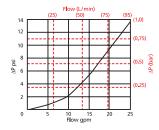
Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

		atio Per ISO 4572/NF particle counter (APC) calib	Filtration Ratio Using APC calibrat	•	
Element	ß _X ≥ 75	B _X ≥ 100	β _X (c) ≥ 200	$\beta_{X}(c) \geq 1000$	
6RZ1	<1.0	<1.0	<1.0	<4.0	4.2
6RZ3	<1.0	<1.0	<2.0	<4.0	4.8
6RZ5	2.5	3.0	4.0	4.8	6.3
6RZ10	7.4	8.2	10.0	8.0	10.0
6RZ25	18.0	20.0	22.5	19.0	24.0

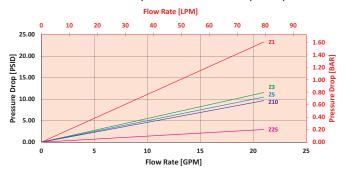
Element	DHC (gm)	Element	DHC (gm)
6RZ1	15	12RZ1	30
6RZ3	15	12RZ3	30
6RZ5	17	12RZ5	34
6RZ10	14	12RZ10	28
6RZ25	25	12RZ25	50

Element Collapse Rating: 150 psid (10 bar)

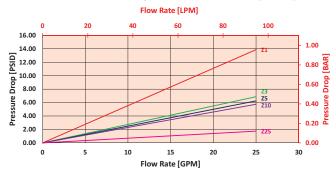

Flow Direction: Outside In

Element Nominal Dimensions: 2.0" (50 mm) O.D. x 6.0" (150 mm) long

SRLT


 $\triangle P_{\text{housing}}$

SRLT $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle P_{element}$

6RZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

12RZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$$

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for SRLT6RZ10S12D5 using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the SRLT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 7 psi (.48 bar) according to the graph for the 6RZ10 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

 $V_f = 100 \text{ SUS } (21.3 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .67$

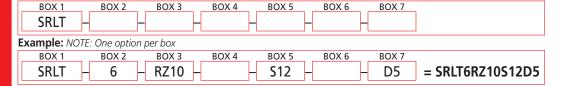
$$\Delta \mathbf{P}_{\text{filter}} = 5 \text{ psi} + (7 \text{ psi} * .67) = 9.7 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .34 \text{ bar} + (.48 \text{ bar} * .67) = .66 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta \textbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \textbf{P}_{f.} \text{ Plug this variable into the overall pressure drop equation.}$


Ele.	ΔP
6R3	0.45
6R10	0.38

Filter Model Number Selection

Highlighted product eligible for QuickDelivery

How to Build a Valid Model Number for a Schroeder SRLT:

BOX 2 BOX 3 **Element Size and Media**

BOX 1 Filter Length of Element (in) Series 6 **SRLT** (requires RZ elements only) 12

RZ1 = R size 1 μ Excellement® Z-Media® (synthetic) RZ3 = R size 3 μ Excellement® Z-Media® (synthetic) RZ5 = R size 5 μ Excellement® Z-Media® (synthetic) RZ10 = R size 10 μ Excellement® Z-Media® (synthetic) RZ25 = R size 25 μ Excellement® Z-Media® (synthetic) RW = R size W media (water removal)

R5Z1 = R size 1 μ Excellement® Z-Media® 500 psid collapse R5Z3 = R size 3 μ Excellement® Z-Media® 500 psid collapse R5Z5 = R size 5 μ Excellement® Z-Media® 500 psid collapse

R5Z10 = R size 10 μ Excellement® Z-Media® 500 psid collapse R5Z25 = R size 25 μ Excellement® Z-Media® 500 psid collapse

Flectrical

BOX 4

Seal Material

Omit = Buna N

SRLTN (Non-bypassing

requires R5Z

elements only)

H = EPRV = Viton®

H.5 = Skydrol® Compatibility

BOX 5 **Porting**

P12 = 3/4" NPTF S12 = SAE-12 $B12 = ISO 228 G^{-3/4}$

BOX 6

Additional Options

Omit = 40 psi bypass setting

> L = Two 1/8" NPTF inlet and outlet female test ports

30 = 30 psi bypass setting

50 = 50 psi bypass setting

60 = 60 psi bypass setting

BOX 7

	Dirt Alarm [®] Options
	Omit = None
Visual	D5 = Visual pop-up
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout
	MS5 = Electrical w/ 12 in. 18

gauge 4-conductor cable MS5LC = Low current MS5

MS10 = Electrical w/ DIN connector (male end only)

MS10LC = Low current MS10

= Electrical w/ 12 ft. MS11 4-conductor wire

= Electrical w/ 5 pin Brad MS12 = Electrical W. 3 p... 2.22 Harrison connector (male end only)

MS12LC = Low current MS12

MS16 = Electrical w/ weather packed sealed connector MS16LC = Low current MS16

MS17LC = Electrical w/ 4 pin Brad Harrison male connector

MS5T = MS5 (see above) w/ thermal lockout

MS5LCT = Low current MS5T

MS10T = MS10 (see above) w/ thermal lockout Electrical MS10LCT = Low current MS10T with

Thermal MS12T = MS12 (see above) w/ thermal lockout Lockout MS12LCT = Low current MS12T

MS16T = MS16 (see above) w/ thermal lockout

MS16LCT = Low current MS16T MS17LCT = Low current MS17T

MS13 = Supplied w/ threaded connector & light Electrical MS14 = Supplied w/ 5 pin Brad Harrison Visual connector & light (male end)

= MS13 (see above), direct current, w/ MS13DCT Electrical thermal lockout

Visual MS13DCLCT = Low current MS13DCT

= MS14 (see above), direct current,w/ Thermal MS14DCT thermal lockout Lockout MS14DCLCT = Low current MS14DCT

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Example: 6R3V

Box 3. E media elements are only available with Buna N seals.

Box 4. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[®] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.

Box 5. B porting option supplied with metric mounting holes.



Features and Benefits (K9)

■ Extremely versatile multiple inlet and outlet ports; can be used alone or in series with another K9

- Top loading for easy access for element change-out
- Allows consolidation of inventoried replacement elements by using K-size elements
- Multiple inlet and outlet porting options reduce the need for additional adaptors on installation
- Can be fitted with test ports for oil sampling
- Small profile allows filter to be mounted in tight areas
- Various Dirt Alarm[®] options
- Meets HF4 automotive standard

100 gpm 380 L/min 900 psi 60 bar

KF5

K9

Filter Housing

Specifications

Model No. of filter in photograph is K91KZ5BP20NP20ND5C.

Flow Rating: Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids

Max. Operating Pressure: 900 psi (60 bar)

Min. Yield Pressure: 3200 psi (220 bar), per NFPA T2.6.1 Rated Fatigue Pressure: 750 psi (52 bar) per NFPA T2.6.1-R1-2005

Temp. Range: -20°F to 225°F (-29°C to 107°C)

Bypass Setting: Cracking: 40 psi (2.8 bar)

Full Flow: 80 psi (5.5 bar)

Porting Head & Cap: Cast Aluminum

Element Case: Steel

Weight of K9-1K: 19 lbs. (8.6 kg) Weight of K9-2K: 30 lbs. (13.6 kg) Weight of K9-3K: 41 lbs. (18.6 kg)

Element Change Clearance: 8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® media (synthetic)

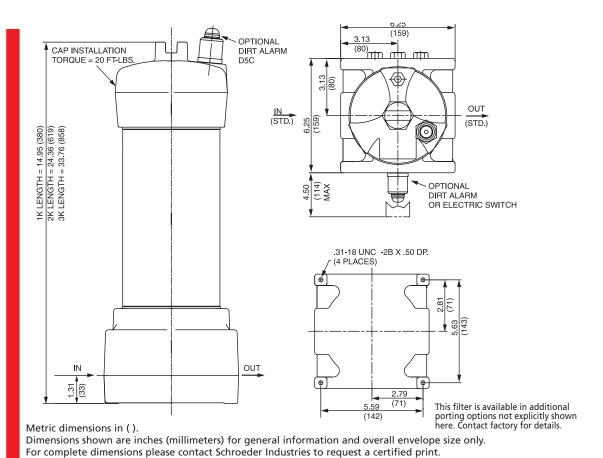
High Water Content All Z-Media® (synthetic), 3, 5 and 10 μ ASP® media (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic), 10 μ ASP® media (synthetic)

Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic), 3, 5 and 10 μ ASP® media (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and 3 and 10 μ

E media (cellulose) with H (EPR) seal designation, 3, 5 and 10 μ ASP® media (synthetic)


Skydrol[®] 3, 5, 10 and 25 µ Z-Media[®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior), 3, 5 and 10 µ ASP®

Media (synthetic)

Fluid Compatibility

K9

Medium Pressure Filter

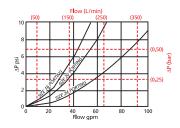
Element Performance Information & Dirt Holding Capacity

		o Per ISO 4572/N rticle counter (APC) cali	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _X ≥ 75	ß _X ≥ 100	$\beta_{\chi} \geq 200$	β _χ (c) ≥ 200	$\beta_{X}(c) \ge 1000$
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KAS3/KKZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KAS5/KKZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KAS10/KKZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5

Dirt Holding Capacity

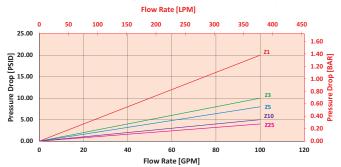
Element	DHC (gm)								
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158

Element Collapse Rating: 150 psid (10 bar) for standard elements

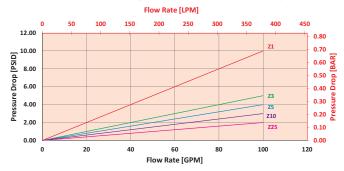

Flow Direction: Outside In

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long


 $\triangle \mathbf{P}_{\text{housing}}$

K9 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle \textbf{P}_{\text{element}}$

ΚZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2KZ/KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 50 gpm (189.5 L/min) for K91KZ10BP16NP16ND5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{housing}$ at 50 gpm. In this case, $\Delta P_{housing}$ is 8 psi (.55 bar) on the graph for the K9 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 50 gpm. In this case, $\Delta P_{\text{element}}$ is 2 psi (.14 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

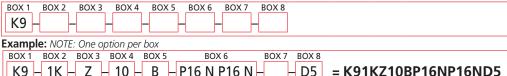
 $\triangle \mathbf{P}_{\text{housing}} = 8 \text{ psi } [.55 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 2 \text{ psi } [.14 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 8 \text{ psi} + (2 \text{ psi} * 1.1) = 10.2 \text{ psi}$$

 $\Delta \mathbf{P}_{\text{filter}} = .55 \text{ bar} + (.14 \text{ bar} * 1.1) = .70 \text{ bar}$

Pressure Drop **Information** Based on Flow Rate and Viscosity


If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f \text{ Plug}$ this variable into the overall

pressure drop equation.								
Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$			
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05			
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03			
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02			
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02			
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01			
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	80.0			
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03			
KZW1	0.43	2KZW1	-	3K25	0.01			
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03			
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02			
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02			
KZW25	0.14	2KZW25/ KKZW25	0.07	3KZX10/ 27KZX10	0.07			

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder K9:

P16 N P16 N D5 - 1K -- Z – 10 – B BOX 5 BOX 1 BOX 2 BOX 3 BOX 4 Number & Size of Filter Seal Material Media Type Micron Rating **Elements** $1 = 1 \mu Z$, ZW, ZX media B = Buna N Omit = E-media (cellulose) 1 K,KK,27K K9 Z = Excellement® Z-Media® $3 = 3 \mu$ AS, E, Z, ZW, ZX media V = Viton® 2 K AS = Anti-Stat Pleat media (synthetic) $5 = 5 \mu$ AS, Z, ZW, ZX media H = EPR3 K $10 = 10 \mu AS, E, M, Z, ZW,$ ZW = Aqua-Excellement® ZW media H.5 = Skydrol® Compatibility **Porting Options** ZX = Excellement® Z-Media® (high collapse centertube) $25 = 25 \mu E, M, Z, ZW, ZX media$ W = W media (water removal) $60 = 60 \mu M \text{ media}$ M = media (reusable metal mesh) 150 = 150 μ M media $260 = 260 \mu M \text{ media}$

BOX 6 Specification of all 4 ports is required

Porting						
Port 1 (standard)	Port 2	Port 3	Port 4			
N = None	N = None	N = None	N = None			
P16 = 1" NPTF		P16 = 1" NPTF	P16 = 1" NPTF			
P20 = 1¼" NPTF		P20 = 1¼" NPTF	P20 = 1¼" NPTF			
P24 = 1½" NPTF		P24 = 1½" NPTF	P24 = 1½" NPTF			
S16 = SAE-16	F16 = 1" SAE 4-bolt flange Code 61		F16 = 1" SAE 4-bolt flange Code 61			
S20 = SAE-20	F20 = 1¼" SAE 4-bolt flange Code 61		F20 = 1¼" SAE 4-bolt flange Code 61			
S24 = SAE-24	F24 = 1½" SAE 4-bolt flange Code 61		F24 = 1½" SAE 4-bolt flange Code 61			
B16 = ISO 228	S16 = SAE-16	B16 = ISO 228	S16 = SAE-16			
G-1"	S20 = SAE-20	G-1"	S20 = SAE-20			
B20 = ISO 228	S24 = SAE-24	B20 = ISO 228	S24 = SAE-24			
G-1¼"	B16 = ISO 228 G-1"	G-1¼"	B16 = ISO 228 G-1"			
B24 = ISO 228	B20 = ISO 228 G-1¼"	B24 = ISO 228	B20 = ISO 228 G-1¼"			
G-1½"	B24 = ISO 228 G-1½"	G-1½"	B24 = ISO 228 G-1½"			

BOX 8

Dirt Alarm [®] Options						
	Omit = None					
Visual	D5 = Visual pop-up D5C = D5 in cap					
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout D8C = D8 in cap					
Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector					
Electrical with Thermal Lockout	MSST = MSS (see above) w/ thermal lockout MSSLCT = Low current MSST MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16CT = Low current MS16T MS16T = Low current MS16T MS16LCT = Low current MS16T					
Electrical Visual	MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)					
Electrical Visual with Thermal Lockout	MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT					

NOTES:

- Box 2. Double and triple stacking of K-size elements can be replaced by KK and 27K elements, respectively. Number of elements must equal 1 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4, and 5. ZW media not available in 27K length.
- Box 5. For options H, V, and H.5, all aluminum parts are anodized.
 H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers.
 Skydrol® is a registered trademark of Solutia Inc.
- Box 8. If location 1 is used as inlet port, dirt alarm will occupy location 2. If location 2 is used as inlet port, dirt alarm will occupy location 1. If dual inlet ports are specified, the only dirt alarm option is pop-up indicator in cap (D5C).

Omit=None X=Blocked bypass U=Test point in cap (upstream) UU=Test points in block (upstream and downstream) 10=10 psi bypass setting 20=20 psi bypass setting 25=25 psi bypass setting 30=30 psi bypass setting 40=40 psi bypass setting

Single Pass Filter Kit 2K9/3K9

Features and Benefits

■ Two or three patented-pending K9 filters supplied in series as a single filter assembly providing in-line single pass particulate and water filtration

- Meets HF4 automotive standard
- 900 psi rating covers almost all transfer line pressure specs including air driven transfer systems
- Top loading for easy access for element change out
- Allows consolidation of inventoried elements by using K-size elements
- Can be fitted with test points for oil sampling

100 gpm 380 Ľ/min 900 psi 60 bar

KF5

K9

2K9

3K9

Flow Rating: Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids

Max. Operating Pressure: 900 psi (60 bar)

Min. Yield Pressure: 3200 psi (220 bar), per NFPA T2.6.1

Rated Fatigue Pressure: 750 psi (52 bar) per NFPA T2.6.1-R1-2005

Model No. of filters in photograph are 3K9127EDBBP20P20UUD5C and Custom 2K9.

Temp. Range: -20°F to 225°F (-29°C to 107°C)

Bypass Setting: Cracking: 40 psi (2.8 bar) each filter housing

Porting Base & Cap: Cast Aluminum

Element Case: Steel

Element Change Clearance: 8.50" (215 mm) for 1K; 17.5" (445 mm) for KK;

26.5" (673 mm) for 27K

Filter Housing **Specifications**

Type Fluid	Appropriate	Schroeder	Media
------------	-------------	-----------	-------

Petroleum Based Fluids All Z-Media® and ASP® media (synthetic)

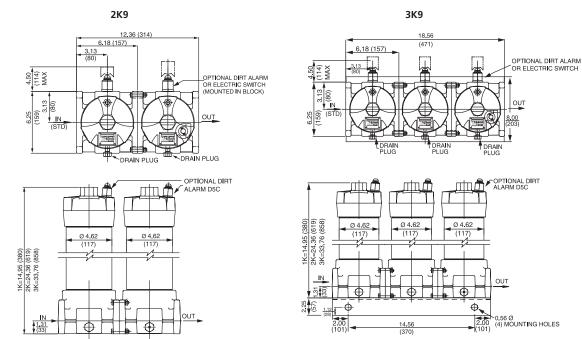
High Water Content All Z-Media® and ASP® media (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)

Water Glycols 3, 5, 10 and 25 μ Z-Media[®], 3, 5 and 10 μ ASP[®] media (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and 3 and 10 μ

E media (cellulose) with H (EPR) seal designation


Skydrol® 3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior), 3, 5 and 10 μ ASP® Media

(synthetic)

Fluid Compatibility

2K9/3K9

Single Pass Filter Kit

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

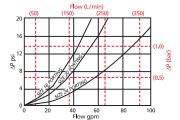
Element Performance Information & Dirt Holding Capacity

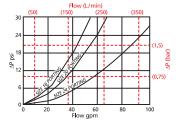
	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	β _X ≥ 75	$\beta_X \ge 100$	$\beta_X \ge 200$	$\beta_{X}(c) \geq 200$	$\beta_{X}(c) \geq 1000$	
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2	
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8	
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3	
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0	
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0	
KZW1	N/A	N/A	N/A	<4.0	<4.0	
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8	
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4	
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6	
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5	

Element	DHC (gm)								
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3/	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158

Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In

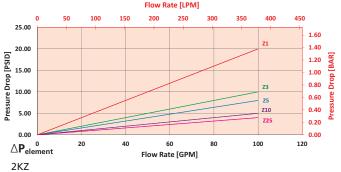

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

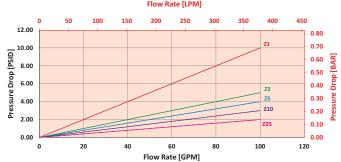

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Single Pass Filter Kit 2K9/3K

$\triangle \mathbf{P}_{\text{housing}}$

2K9/3K9 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:




 $\triangle \mathbf{P}_{\mathsf{element}}$

ΚZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$$

Exercise:

Determine ΔP_{filter} at 50 gpm (189.5 L/min) for 2K9109DBBP16P16D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{housing}$ at 50 gpm. In this case, $\Delta P_{housing}$ is 16 psi (1.1 bar) on the graph for the 2K9 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 50 gpm for the first element. In this case, $\Delta P_{\text{element}}$ is 2 psi (.14 bar) according to the graph for the KZ10 element.

Use the element pressure curve to determine $\triangle P_{\text{element}^2}$ at 50 gpm for the first element. In this case, $\triangle P_{\text{element}}$ is 5 psi (.34 bar) according to the graph for the KZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\triangle P_{\text{element}} * V_f$). The $\triangle P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\Delta \mathbf{P}_{\text{housing}} = 16 \text{ psi } [1.1 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}^1} = 2 \text{ psi } [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}^2} = 5 \text{ psi } [.34 \text{ bar}]$

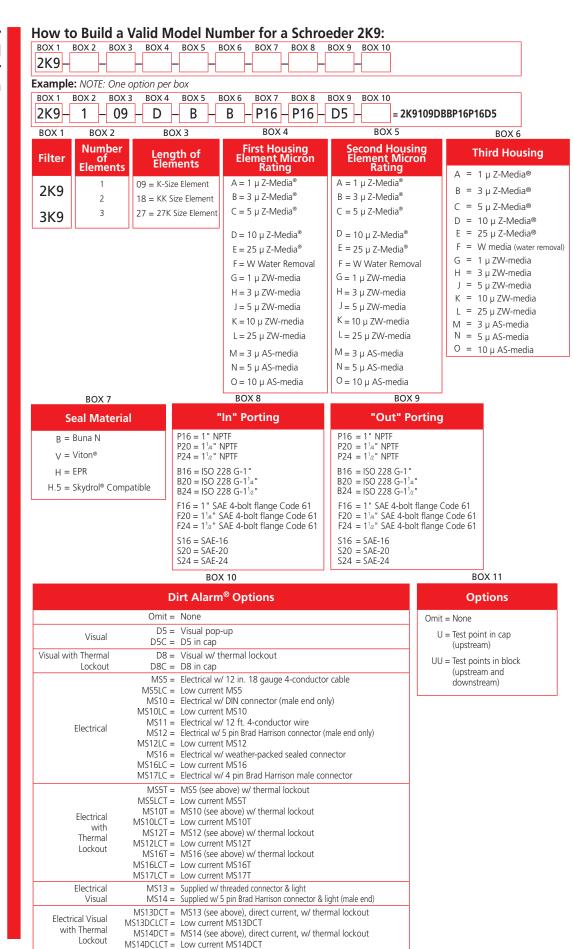
 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta \mathbf{P}_{\text{filter}} = 16 \text{ psi} + (2 \text{ psi} * 1.1) + (5 \text{ psi} * 1.1) = 23.7 \text{ psi}$$

 $\Delta \mathbf{P}_{\text{filter}} = 1.1 \text{ bar} + (.14 \text{ bar} * 1.1) + (.34 * 1.1) = 1.6 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:


If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	80.0
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KZX10/ 27KZX10	0.07

9/3K9 Single Pass Filter Kit

Filter Model Number Selection

Box 10. Option UU not available in combination with indicator in block.

NOTES:

Box 2. Double and triple stacking

of K-size elements can be

Number of elements must

equal 1 when using KK or

available in 27K length.

Box 4 Replacement element part

reference page 184.

Box 6. For options H, V, and H.5,

anodized.

Solutia Inc.

all aluminum parts are

H.5 seal designation includes

the following: EPR seals,

stainless steel wire mesh

on elements, and light oil

coating on housing exterior. Viton is a registered

trademark of DuPont Dow

Elastomers.Skydrol® is a

registered trademark of

27K elements. ZW media not

numbers are identical to K9

replacement parts. Please

replaced by KK and 27K

elements, respectively.

In-Line Filter QF5

Features and Benefits

- Element changeout from the top minimizes oil spillage
- Available with optional core assembly to accommodate coreless elements
- Offered with standard Q, QPML deep-pleated and QCLQF coreless elements in 16" and 39" lengths with standard Viton® seals
- Offered in pipe, SAE straight thread, and flange porting
- Optional inlet and outlet test points
- WQF5 model for water service also available
- Various Dirt Alarm® options

300 gpm 1135 L/min 500 psi 35 bar

KF5

SRLT

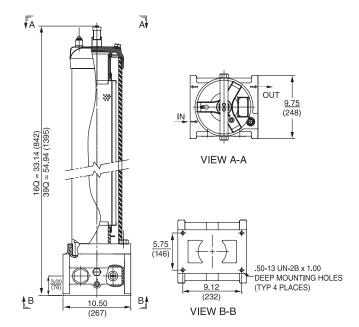
K9

QF5

Filter Housing **Specifications**

Model No. of filter in photograph is QF539QZ10P32.

Flow Rating:	Up to 300 gpm (1135 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	500 psi (35 bar)
Min. Yield Pressure:	2500 psi (172 bar), per NFPA T2.6.1-R1-2005
Rated Fatigue Pressure:	Contact Factory
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)
Porting Base:	Cast Aluminum
Element Case:	Steel
Cap:	Ductile Iron
Weight of QF516: Weight of QF539:	
Element Change Clearance:	16Q 12.0" (205 mm) 39Q 33.8" (859 mm)


Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All Z-Media® and ASP® media (synthetic) High Water Content All Z-Media® and ASP® media (synthetic) Invert Emulsions 10 and 25 μ Z-Media[®] and 10 μ ASP[®] media (synthetic) Water Glycols 3, 5, 10 and 25 μ Z-Media® and all ASP® Media (synthetic) Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and all ASP® media (synthetic)

Skydrol® 3, 5, 10 and 25 µ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP® media (synthetic)

QF5

In-Line Filter

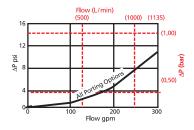
Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

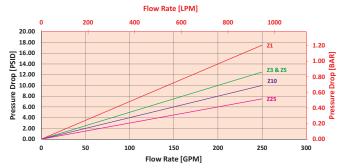
		o Per ISO 4572/I ed particle counter (per ISO 4402		Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element		β _χ ≥ 75	$B_X \ge 100$	$\beta_{\chi} \geq 200$	β _χ (c) ≥ 200	$B_X(c) \ge 1000$
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
200	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0

Ele	ment	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
	Z1	276	CLQFZ1	307	PMLZ1	307
	Z3	283	CLQFZ3	315	PMLZ3	315
16Q	Z5	351	CLQFZ5	364	PMLZ5	364
	Z10	280	CLQFZ10	306	PMLZ10	330
	Z25	254	CLQFZ25	278	PMLZ25	299
	Z1	974	CLQFZ1	1259	PMLZ1	1485
	Z3	1001	CLQFZ3	1293	PMLZ3	1525
39Q	Z5	954	CLQFZ5	1302	PMLZ5	1235
	Z10	940	CLQFZ10	1214	PMLZ10	1432
	Z25	853	CLQFZ25	1102	PMLZ25	1299

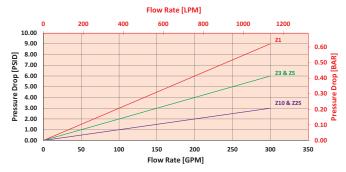

Element Collapse Rating: Q and QPML: 150 psid (10 bar), QCLQF: 100 psid (7 bar)

Flow Direction: Outside In

Element Nominal Dimensions: 16Q: 6.0" (150 mm) O.D. x 16.85" (430 mm) long


16QCLQF: 6.0" (150 mm) O.D. x 18.21" (463 mm) long 16QPML: 6.0" (150 mm) O.D. x 16.00" (405 mm) long 39QCLQF: 6.0" (150 mm) O.D. x 40.01" (1016 mm) long 39QPML: 6.0" (150 mm) O.D. x 37.80" (960 mm) long $\triangle P_{\text{housing}}$

QF5 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle \textbf{P}_{\text{element}}$

16QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QCLQFZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$

Exercise:

Determine ΔP_{filter} at 100 gpm (379 L/min) for QF539QZ3P32UDPG using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta \mathbf{P}_{\text{housing}}$ at 100 gpm. In this case, $\Delta \mathbf{P}_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QF5 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 100 gpm. In this case, $\Delta P_{\text{element}}$ is 1 psi (.07 bar) according to the graph for the 39QZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle P_{\text{filter}}$, is calculated by adding $\triangle P_{\text{housing}}$ with the true element pressure differential, ($\triangle P_{\text{element}} * V_f$). The $\triangle P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\triangle \mathbf{P}_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 1 \text{ psi } [.07 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta \mathbf{P}_{\text{filter}} = 2 \text{ psi} + (1 \text{ psi} * 1.1) = 3.1 \text{ psi}$$

<u>OR</u>

 $\Delta \mathbf{P}_{\text{filter}} = .14 \text{ bar} + (.07 \text{ bar} * 1.1) = .22 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate } x \Delta P_f$. Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$	Ele.	$\Delta \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
16QZ25	0.01	39QPMLAS- 10V	0.01		

In-Line Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder QF5:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10
QF5			-						

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10	
QF5	39	- Q -	- Z	- 3 -		P32		- U	-DPG	=QF539QZ3P32UDPG

BOX 1	BOX 2	BOX 3
Filter Series	Element Length (in)	Element Style
	16	Q
QF5	39	QCLQF
WQF5 (Water)		QPML

Media Type Z = Excellement® Z-Media® (synthetic) AS = Anti-Stat Pleat media (synthetic) W = W Media (water removal) Water System Element Options

BOX 4

Micron Rating 1 = 1 μ Z-Media® 3 = 3 μ AS and Z-Media® $5 = 5 \mu$ AS and Z-Media® 10 = 10 μ AS and Z-Media® 25 = 25 μ Z-Media®

BOX 5

BOX 6

Housing Seal Material

Omit = Buna NH = EPRV = Viton®

QM25 = Q size 25 μ M media

(resuable metal) QM60 = Q size 60 µ M media (resuable metal)

QM150 = Q size 150 µ M media (resuable metal)

BOX 7

BOX 10

Po	rting	
P32 = 2 "NPTF $P40 = 2\frac{1}{2} "NPTF$	F32 =	2" SAE 4-bolt flange Code 61
P48 = 3 "NPTF	F40 =	2½"SAE 4-bolt flange Code 61
S32 = SAE-32	F48 =	3" SAE 4-bolt flange Code 61

BOX 8

Bypass Setting

Omit = 30 psi cracking 50 = 50 psi cracking X = Blocked bypass

BOX 9

Options

U = Test point in cap (upstream)

UU = Test points in block (upstream and downstream)

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5 plus the letter V. Example: 39QZ10V

Box 3. QCLQF are CoreCentric® coreless elements - housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.

Box 4. For option W, Box 3 must equal Q.

Box 6. All elements for this filter are supplied with Viton® seals. Seal designation in Box 6 applies to housing only. Viton® is a registered trademark of DuPont Dow Elastomers.

Dirt Alarm® Options None Omit = None DPG = Standard differential pressure gauge D5 = Visual pop-up Visual D5C = D5 in cap D5R = D5 mounted opposite standard location Visual with Thermal D8 = Visual w/ thermal lockout Lockout D8C = D8 in capD8R = D8 mounted opposite standard location MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector Electrical (male end only) MS12LC = Low current MS12MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout Electrical MS10LCT = Low current MS10T with MS12T = MS12 (see above) w/ thermal lockout Thermal MS12LCT = Low current MS12T Lockout MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T MS13 = Supplied w/ threaded connector & light Electrical Visual MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end) MS13DCT = MS13 (see above), direct current, w/ thermal lockout **Electrical Visual** MS13DCLCT = Low current MS13DCT with Thermal MS14DCT = MS14 (see above), direct current, w/ thermal Lockout lockout MS14DCLCT = Low current MS14DCT

184 SCHROEDER INDUSTRIES

Cold Start Protection Inside-Out Flow Filter QF5i

Features and Benefits (QF5i)

- Magnetic filtration protection while filter is in cold start bypass
- Coreless QCL element with inside-out flow for eco-friendly easy disposal
- Efficient means to remove both ferromagnetic and non-ferromagnetic parts from the fluid
- Designed for inside-out flow
- Depending on the filter length, a magnetic rod can be threaded into the element top cap sealing plug
- Element changeout from the top minimizes oil spillage
- Offered in pipe, SAE straight thread, and flange porting
- Optional inlet and outlet test points
- Various Dirt Alarm[®] options

120 gpm 454 L/min 500 psi 35 bar

KF5

K9

QF5i

Filter Housing **Specifications**

Flow Rating: Up to 120 gpm (454 L/min) for 150 SUS (32 cSt) fluids

Max. Operating Pressure: 500 psi (35 bar)

Min. Yield Pressure: 2500 psi (172 bar), per NFPA T2.6.1-R1-2005

Rated Fatique Pressure: Contact Factory

Temp. Range: -20°F to 225°F (-29°C to 107°C)

Bypass Setting: Cracking: 60 psi (4.1 bar) Full Flow: 95 psi (6.6 bar)

Porting Base: Cast Aluminum

Element Case: Steel

Cap: Ductile Iron

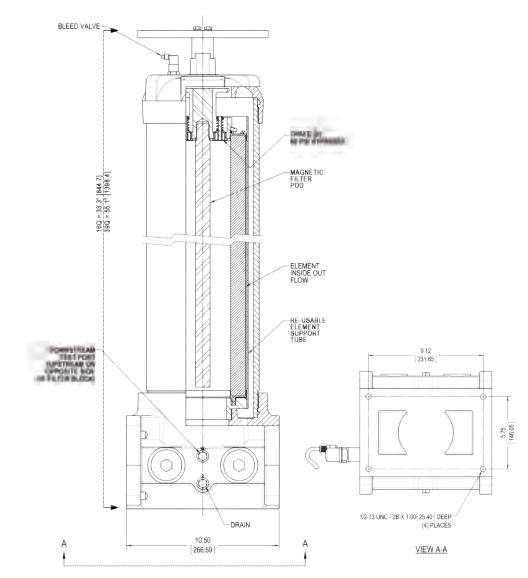
Weight of QF5i16: 85 lbs. (39 kg) Weight of QF5i39: 120 lbs. (55 kg)

Element Change Clearance: 16QCLI 16.0" (407 mm)

39QCLI 39.0" (991 mm)

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All Z-Media® and ASP® media (synthetic)


High Water Content All Z-Media® and ASP® media (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)

Water Glycols 3, 5, 10 and 25 μ Z-Media® and all ASP® Media (synthetic)

Cold Start Protection Inside-Out Flow Filter

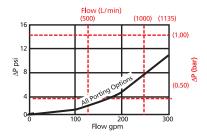
Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402						per ISO 16889 ted per ISO 11171	Dirt Holding Capacity	
Ele	ment	ß _X ≥ 75	$B_X \ge 100$	$\beta_{\chi} \geq 200$	$\beta_{\chi}(c) \ge 200$	$B_X(c) \ge 1000$	Element	DHC (gm)
	CLIZ1	<1.0	<1.0	<1.0	<4.0	4.2	CLIZ1	307
	CLIZ3	<1.0	<1.0	<2.0	<4.0	4.8	CLIZ3	315
16Q	CLIZ5	2.5	3.0	4.0	4.8	6.3	CLIZ5	364
	CLIZ10	7.4	8.2	10.0	8.0	10.0	CLIZ10	306
	CLIZ25	18.0	20.0	22.5	19.0	24.0	CLIZ25	278
	CLIZ1	<1.0	<1.0	<1.0	<4.0	4.2	CLIZ1	1259
200	CLIZ3	<1.0	<1.0	<2.0	<4.0	4.8	CLIZ3	1293
39Q	CLIZ5	2.5	3.0	4.0	4.8	6.3	CLIZ5	1302
	CLIZ10	7.4	8.2	10.0	8.0	10.0	CLIZ10	1214
	CLIZ25	18.0	20.0	22.5	19.0	24.0	CLIZ25	1102

Flow Direction: Inside-Out

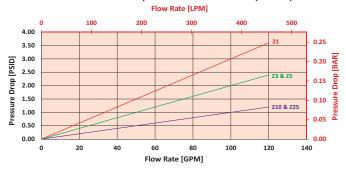
Element Nominal Dimensions: 16QCLI: 6.0" (150 mm) O.D. x 17.81" (452 mm) long


39QCLI: 6.0" (150 mm) O.D. x 39.63" (1007 mm) long

Cold Start Protection Inside-Out Flow Filter QF5i

 $\triangle \mathbf{P}_{\text{housing}}$


QF5i $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle \textbf{P}_{\text{element}}$

16QCLIZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QCLIZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 120 gpm (455 L/min) for QF5i16QCLIZ3P32 using 200 SUS (44 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 120 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the QF5i housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 120 gpm. In this case, $\Delta P_{\text{element}}$ is 6 psi (.415 bar) according to the graph for the 16QCLIZ3 element.

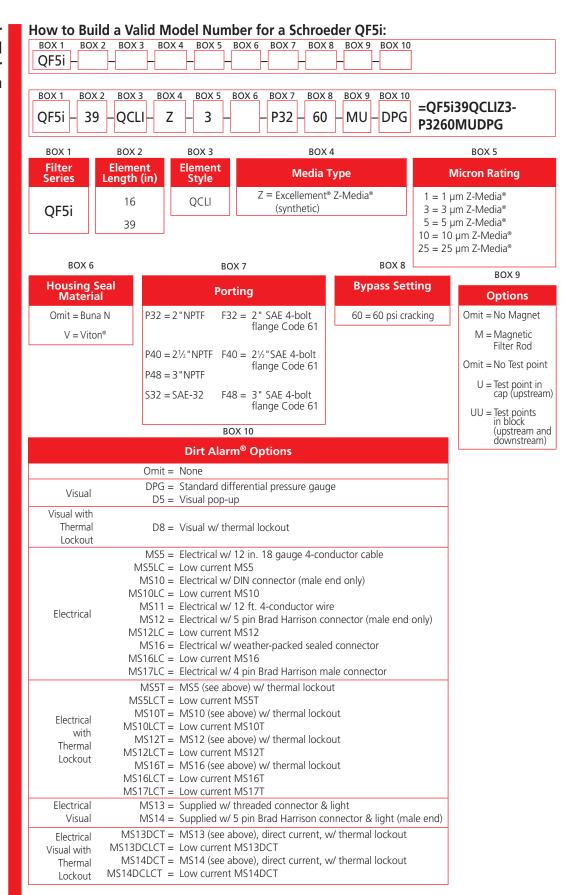
Because the viscosity in this sample is 200 SUS (44 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 6 \text{ psi } [.415 \text{ bar}]$

 $V_f = 200 \text{ SUS } (42.4 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.333$

$$\Delta P_{\text{filter}} = 3 \text{ psi} + (6 \text{ psi} * 1.333) = 11 \text{ psi}$$


 ΔP_{filter} = .21 bar + (.415 bar * 1.333) = .76 bar

Pressure Drop **Information** Based on Flow Rate and Viscosity

Cold Start Protection Inside-Out Flow Filter

Filter Model Number Selection

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5 plus the letter V. Example: 16QCLIZ10V

Box 6. All elements for this filter are supplied with Viton® seals. Seal designation in Box 6 applies to housing only. Viton® is a registered trademark of DuPont Dow Elastomers.

In-Line Filter 3QF5

Features and Benefits

- Element changeout from the top minimizes oil spillage
- Available with optional core assembly to accommodate coreless elements
- Offered with standard Q, QPML deep-pleated and QCLQF coreless elements in 16" and 39" lengths with standard Viton® seals
- Offered in pipe, SAE straight thread, and flange porting
- Optional inlet and outlet test points
- Various Dirt Alarm® options

300 gpm 1135 L/min 500 psi 35 bar

KF5

K9

3QF5

Filter Flow Rating: Up to 300 gpm (1135 L/min) for 150 SUS (32 cSt) fluids Housing Max. Operating Pressure: 500 psi (35 bar)

Min. Yield Pressure: 2500 psi (172 bar), per NFPA T2.6.1-R1-2005

Rated Fatigue Pressure: Contact Factory

Temp. Range: -20°F to 225°F (-29°C to 107°C)

Bypass Setting: Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)

Porting Base: Cast Aluminum

Element Case: Steel

Cap: Ductile Iron

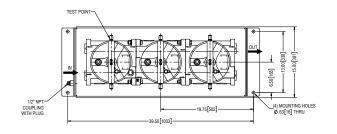
Weight of 3QF539: 655 lbs. (298 kg) Element Change Clearance: 33.8" (859 mm)

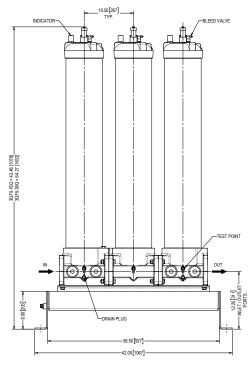
Specifications

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All Z-Media® and ASP® media (synthetic)

High Water Content All Z-Media® and ASP® media (synthetic)


Invert Emulsions 10 and 25 μ Z-Media[®] and 10 μ ASP[®] media (synthetic)


Water Glycols 3, 5, 10 and 25 µ Z-Media® and all ASP® Media (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and all ASP® media (synthetic)

3, 5, 10 and 25 µ Z-Media[®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP® media (synthetic)

In-Line Filter

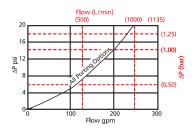
Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

			o Per ISO 4572/I ed particle counter (per ISO 4402	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element		ß _X ≥ 75	$B_X \ge 100$	$B_X \ge 200$	β _χ (c) ≥ 200	$\beta_{\chi}(c) \ge 1000$
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
200	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0

Ele	ment	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
	Z1	974	CLQFZ1	1259	PMLZ1	1485
	Z3	1001	CLQFZ3	1293	PMLZ3	1525
39Q	Z5	954	CLQFZ5	1302	PMLZ5	1235
	Z10	940	CLQFZ10	1214	PMLZ10	1432
	Z25	853	CLOFZ25	1102	PMLZ25	1299

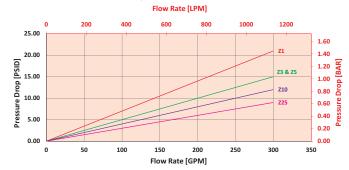
Q and QPML: 150 psid (10 bar), QCLQF: 100 psid (7 bar) Element Collapse Rating:

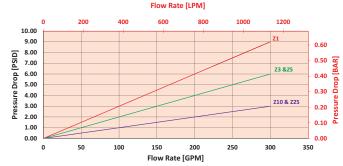

> Flow Direction: Outside In

Element Nominal Dimensions: 39Q: 6.0" (150 mm) O.D. x 38.70" (985 mm) long

39QCLQF: 6.0" (150 mm) O.D. x 40.01" (1016 mm) long 39QPML: 6.0" (150 mm) O.D. x 37.80" (960 mm) long

 $\triangle \textbf{P}_{\text{housing}}$


3QF5 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle P_{\text{element}}$

16QCLQF

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QCLQF Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$

Exercise:

Determine $\triangle \mathbf{P}_{\text{filter}}$ at 100 gpm (379 L/min) for 3QF539QEDBVP32P3250DPG using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 100 gpm. In this case, $\Delta P_{\text{housing}}$ is 5.5 psi (.39 bar) on the graph for the 3QF5 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 100 gpm for the first element. In this case, $\Delta P_{\text{element}}$ is 1 psi (.07 bar) according to the graph for the 39QZ25 element.

Use the element pressure curve to determine $\Delta P_{\text{element}^2}$ at 100 gpm for the first element. In this case, $\Delta P_{\text{element}}$ is 1 psi (.07 bar) according to the graph for the 39QZ10 element.

Use the element pressure curve to determine $\Delta P_{\text{element}^2}$ at 100 gpm for the first element. In this case, $\Delta P_{\text{element}}$ is 1 psi (.07 bar) according to the graph for the 39QZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

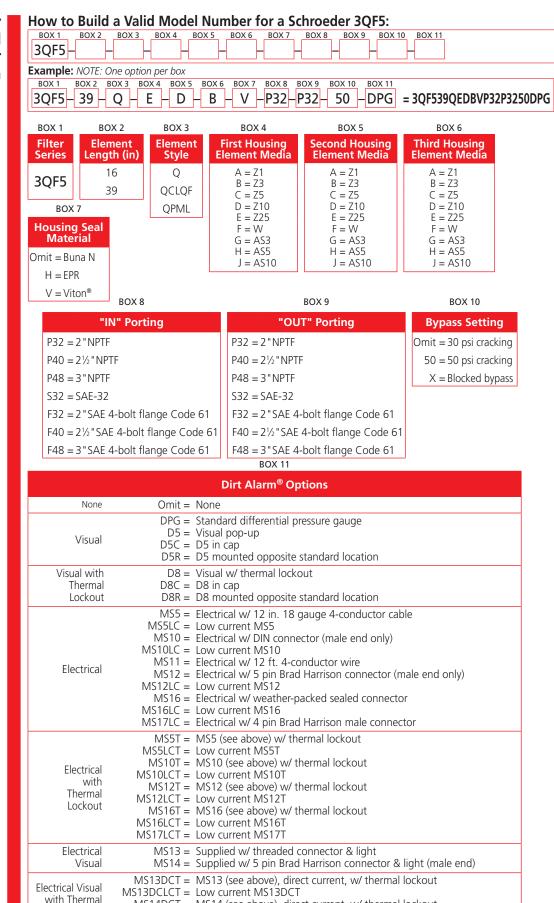
Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * V_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\Delta \mathbf{P}_{\text{housing}} = 5.5 \text{ psi } [.39 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}^1} = 1 \text{ psi } [.07 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}^2} = 1 \text{ psi } [.07 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}^3} = 1 \text{ psi } [.07 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 5.5 \text{ psi} + (1 \text{ psi} * 1.1) + (1 \text{ psi} * 1.1) + (1 \text{ psi} * 1.1) = 8.8 \text{ psi}$$
 OR

$$\Delta \mathbf{P}_{\text{filter}}$$
 = .39 bar + (.07 bar * 1.1) + (.07 * 1.1) + (.07 * 1.1) = .62 bar


Pressure Drop Information Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f$ Plug this variable into the overall pressure drop equation

p. 055 a. c		o oquat.	•		
Ele.	$\Delta \textbf{P}$	Ele.	$\Delta \textbf{P}$	Ele.	$\Delta \textbf{P}$
16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
16QZ3	0.04				
16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
16QZ25	0.01	39QPMLAS- 10V	0.01		
	16QAS3V 16QAS5V 16QAS10V 16QPML- AS3V 16QPML- AS10V 16QPML- AS10V 16QZ1 16QZ3 16QZ5 16QZ5	Ele. ΔP 16QAS3V 0.04 16QAS5V 0.04 16QAS10V 0.03 16QPMIL- AS3V 0.05 16QPMIL- AS10V 0.04 16QZ1 0.09 16QZ3 0.04 16QZ5 0.04 16QZ10 0.03	Ele. ΔP Ele. 16QAS3V 0.04 16QPMLZ1 16QAS5V 0.04 16QPMLZ3 16QAS10V 0.03 16QPMLZ3 16QPML-AS3V 0.05 16QPMLZ10 16QPML-AS5V 0.05 16QPMLZ25 16QPML-AS3V 0.04 39QAS3V 16QZ1 0.09 39QAS10V 16QZ3 0.04 39QAS10V 16QZ10 0.03 39QPMLAS-SV 16QZ10 0.03 39QPMLAS-SV 16QZ10 0.01 39QPMLAS-SV 16QZ10 0.01 39QPMLAS-SV	16QAS3V 0.04 16QPMLZ1 0.08 16QAS3V 0.04 16QPMLZ1 0.05 16QAS10V 0.03 16QPMLZ5 0.05 16QPML- 0.05 16QPMLZ10 0.04 16QPML- 0.05 16QPMLZ25 0.02 16QPML- 0.05 16QPMLZ25 0.02 16QPML- 0.04 39QAS3V 0.01 16QZ1 0.09 39QAS3V 0.01 16QZ3 0.04 39QAS10V 0.01 16QZ3 0.04 39QPMLA5 0.02 16QZ10 0.03 39QPMLA5 0.02 16QZ10 0.03 39QPMLA5 0.02	Ele. ΔP Ele. ΔP Ele. 16QAS3V 0.04 16QPMLZ1 0.08 39QZ1 16QAS5V 0.04 16QPMLZ3 0.05 39QZ3 16QAS10V 0.03 16QPMLZ5 0.05 39QZ5 16QPML-AS3V 0.05 16QPMLZ10 0.04 39QZ10 16QPML-AS5V 0.05 16QPMLZ25 0.02 39QZ25 16QPML-AS10V 0.04 39QAS3V 0.01 39QPMLZ1 16QZ1 0.09 39QAS1V 0.01 39QPMLZ5 16QZ3 0.04 39QPMLAS-3 0.02 39QPMLZ10 16QZ10 0.03 39QPMLAS-3 0.02 39QPMLZ10 16QZ3 0.04 39QPMLAS-3 0.02 39QPMLZ10

DF5 In-Line Filter

Filter Model Number Selection

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4, plus the letter V. Example: 39QZ10V
- Box 3. QCLQF are CoreCentric® coreless elements housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.
- Box 4. For option F, Box 3 must equal Q.
- Box 7. All elements for this filter are supplied with Viton® seals. Seal designation in Box 5 applies to housing only.

 Viton® is a registered trademark of DuPont Dow Elastomers.

Lockout

In-Line Filter QFD5

Features and Benefits

- Duplex filter design
- Approved for API 5L use
- Element changeout from the top minimizes oil spillage
- Available with optional core assembly to accommodate coreless elements
- Offered with standard Q, QPML deep-pleated and QCLQF coreless elements in 16" and 39" lengths with Viton® seals as the standard
- Offered in 2" and 3" SAE J518 4-bolt flange Code 61 and ANSI 300# flange porting
- Integral inlet and outlet test points are standard on all models
- Various Dirt Alarm® options
- Also available in 4, 6 or 8 housing modular designs (contact factory)

350 gpm 1325 L/min 500 psi 35 bar

KF5

K9

Model No. of filter in photograph is QFD516QZ10F48DPG.

QFD5

Flow Rating: Up to 175 gpm (675 L/min) for 2";

350 gpm (1325 L/min) for 3" for 150 SUS (32 cSt) fluids

Max. Operating Pressure: 500 psi (35 bar) Min. Yield Pressure: Contact Factory Rated Fatigue Pressure: Contact Factory

Temp. Range: -15°F to 200°F (-26°C to 93°C)

Bypass Setting: Cracking: 30 psi (2.1 bar) Full Flow: 33 psi (2.3 bar) for 2"; 38 psi (2.6 bar) for 3"

Porting Base & Cap: Ductile Iron

Element Case & Transfer Valve: Steel

Weight of QFD5-16Q: 410.0 lbs. (186.0 kg) for 2"; 455.0 (206.0 kg) for 3" Weight of QFD5-39Q: 562.0 lbs. (255.0 kg) for 2"; 607.0 (275.0 kg) for 3"

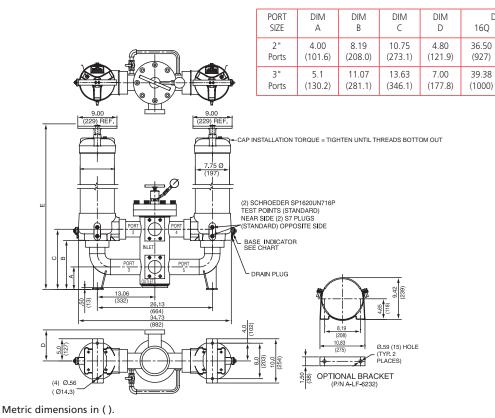
Element Change Clearance: 16Q 12.00" (305 mm)

39Q 33.80" (859 mm)

Filter Housing **Specifications**

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® media (synthetic)


High Water Content All Z-Media® and ASP® media (synthetic)

Invert Emulsions 10 and 25 μ Z-Media[®] and 10 μ ASP[®] media (synthetic) Water Glycols 3, 5, 10 and 25 μ Z-Media® and all ASP® media (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and all ASP® media (synthetic)

QFD5

5 In-Line Filter

DIM E

39Q

58.31

(1481)

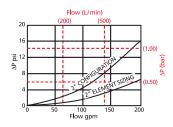
61.19

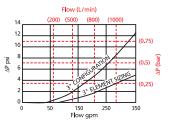
(1559)

Element Performance Information & Dirt Holding Capacity

			io Per ISO 4572/N article counter (APC) cal	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element		ß _X ≥ 75	ß _X ≥ 100	$B_{\chi} \ge 200$	₈ (c) ≥ 200	$\beta_{X}(c) \ge 1000$
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLOFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0

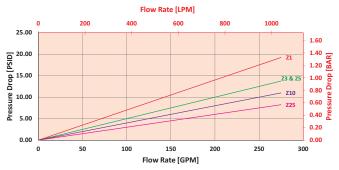
Ele	ment	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
	Z1	276	CLQFZ1	307	PMLZ1	307
	Z3	283	CLQFZ3	315	PMLZ3	315
16Q	Z5	351	CLQFZ5	364	PMLZ5	364
	Z10	280	CLQFZ10	306	PMLZ10	330
	Z25	254	CLQFZ25	278	PMLZ25	299
	Z1	974	CLQFZ1	1259	PMLZ1	1485
	Z3	1001	CLQFZ3	1293	PMLZ3	1525
39Q	Z5	954	CLQFZ5	1302	PMLZ5	1235
	Z10	940	CLQFZ10	1214	PMLZ10	1432
	Z25	853	CLQFZ25	1102	PMLZ25	1299

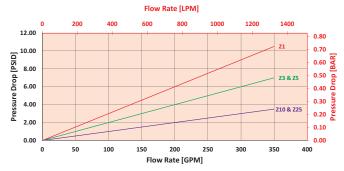

Element Collapse Rating: Q and QPML: 150 psid (10 bar), QCLQF: 100 psid (7 bar)


Flow Direction: Outside In

Element Nominal Dimensions: 39Q: 6.0" (150 mm) O.D. x 38.70" (985 mm) long

39QCLQF: 6.0" (150 mm) O.D. x 40.01" (1016 mm) long 39QPML: 6.0" (150 mm) O.D. x 37.80" (960 mm) long $\triangle \textbf{P}_{\text{housing}}$


QFD5 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle P_{element}$

16QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QCLQFZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$

Exercise:

Determine ΔP_{filter} at 200 gpm (758 L/min) for QFD516QZ3F48D5C using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the QFD5 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 200 gpm. In this case, $\Delta P_{\text{element}}$ is 7 psi (.48 bar) according to the graph for the 16QCZ3 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

$$\triangle \mathbf{P}_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$$

$$V_f = 100 \text{ SUS } (21.3 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .67$$

$$\Delta \mathbf{P}_{\text{filter}} = 5 \text{ psi} + (7 \text{ psi} * .67) = 9.7 \text{ psi}$$

$$\Delta \mathbf{P}_{\text{filter}} = .34 \text{ bar} + (.48 \text{ bar} * .67) = .66 \text{ bar}$$

Pressure Drop **Information** Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_f$ Plug this variable into the overall pressure drop equation

Ele.	$\Delta \textbf{P}$	Ele.	$\Delta \textbf{P}$	Ele.	$\Delta \mathbf{P}$
16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
16QZ25	0.01	39QPMLAS- 10V	0.01		

FD5 In-Line Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder QF5:

QFD5	BOX 1 BOX 2 BOX 3	BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10
	QFD5 –	

BOX 1			BOX 4				
QFD5	– 16 -	- Q	- Z -	- 3 -	 - F48 -	-	_D5C_ = QFD516QZ3F48D5C

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	Element Length (in)	Element Style	Media Type	Micron Rating
OFDE	16	Q	Z = Excellement® Z-Media® (synthetic)	1 = 1 μm Z-Media [®] 3 = 3 μm Z-Media [®]
QFD5	39	QCLQF	AS = Anti-Stat Pleat media (synthetic)	5 = 5 μm Z-Media [®] 10 = 10 μm Z-Media [®]
		QPML	W = W media (water removal)	25 = 25 μm Z-Media®
BOX	K 6		BOX 7	BOX 8

ina	Seal	Ma	terial

Omit = Buna N V = Viton®

Hous

Porting F32 = 2" SAE 4-bolt flange Code 61

F32M = 2" SAE 4-bolt flange Code 61 FA32 = 2" ANSI 300# flange

F48 = 3" SAE 4-bolt flange Code 61

F48M = 3" SAE 4-bolt flange Code 61 FA48 = 3" ANSI 300# flange

Bypass Setting

Omit = 30 psi cracking 50 = 50 psi cracking

X = Blocked bypass

BOX 9

	Sorts
	Dirt Alarm® Options
	Omit = None
Visual	DPG = Standard differential pressure gauge D5 = Visual pop-up D5C = D5 in cap
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout D8C = D8 in cap
Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector
Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS16LCT = Low current MS16T
Electrical Visual	MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)
Electrical Visual with Thermal Lockout	MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5 plus the letter V. Example: 39QZ10V
- Box 3. QCLQF are CoreCentric® coreless elements housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.
- Box 4. For option W, Box 3 must equal Q.
- Box 6. All elements for this filter are supplied with Viton® seals. Seal designation in Box 6 applies to housing only.

 Viton® is a registered trademark of DuPont Dow Elastomers.

In-Line Filter QF1

Features and Benefits

- Also available in L-ported version
- Element changeout from the top minimizes oil spillage
- Available with optional core assembly to accommodate coreless elements
- Offered with standard Q, QPML deep-pleated and QCLQF coreless elements in 16" and 39" lengths with Viton® seals as the standard
- Offered in pipe, SAE straight thread, and flange porting
- Integral inlet and outlet test points are standard on all models
- Various Dirt Alarm® options

450 gpm 1700 L/min 1500 psi 100 bar

KF5

K9

Model No. of filter in photograph is QF1516QZ10P24MS10AC.

Filter QF15

Housing **Specifications**

Flow Rating:	Up to 450 gpm (1/00 L/min) for 150 SUS (32 cSt) fluids

Max. Operating Pressure: 1500 psi (100 bar)

Min. Yield Pressure: 4900 psi (340 bar), per NFPA T2.6.1

Rated Fatigue Pressure: 800 psi (55 bar), per NFPA T2.6.1-R1-2005

Temp. Range: -20°F to 225°F (-29°C to 107°C)

Bypass Setting: Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)

Porting Base & Cap: Ductile Iron

Element Case: Steel

Weight of QF15-16Q: 139.0 lbs. (63.0 kg)

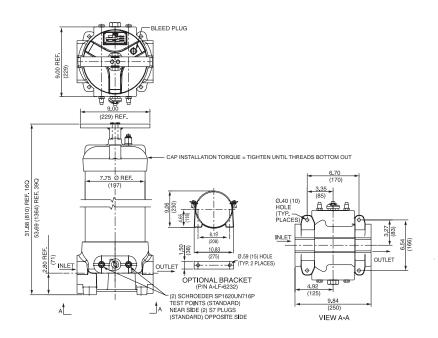
Weight of QF15-39Q: 198.0 lbs. (90.0 kg) Element Change Clearance: 16Q 12.0" (305 mm)

39Q 33.8" (859 mm)

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® Media (synthetic)

High Water Content All Z-Media® and ASP® media (synthetic)


Invert Emulsions 10 and 25 μ Z-Media[®] and 10 μ ASP[®] media (synthetic)

Water Glycols 3, 5, 10 and 25 µ Z-Media® and all ASP® media (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and all ASP® media (synthetic)

QF15

5 In-Line Filter

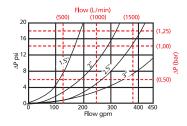
Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element		ß _X ≥ 75	$B_X \ge 100$	$B_{\chi} \ge 200$	$\beta_{\chi}(c) \ge 200$	$\beta_{X}(c) \ge 1000$
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0

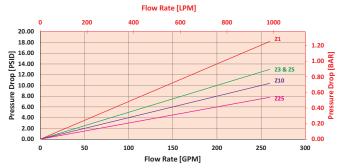
Elen	nent	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
	Z1	276	CLQFZ1	307	PMLZ1	307
	Z3/AS3V	283	CLQFZ3	315	PMLZ3/PMLAS3V	315
16Q	Z5/AS5V	351	CLQFZ5	364	PMLZ5/PMLAS5V	364
	Z10/AS10V	280	CLQFZ10	306	PMLZ10/PMLAS10V	330
	Z25	254	CLQFZ25	278	PMLZ25	299
	Z1	974	CLQFZ1	1259	PMLZ1	1485
	Z3/AS3V	1001	CLQFZ3	1293	PMLZ3/PMLAS3V	1525
39Q	Z5/AS5V	954	CLQFZ5	1302	PMLZ5/PMLAS5V	1235
	Z10/AS10V	940	CLQFZ10	1214	PMLZ10/PMLAS10V	1432
	Z25	853	CLQFZ25	1102	PMLZ25	1299

Element Collapse Rating: Q and QPML: 150 psid (10 bar), QCLQF: 100 psid (7 bar)

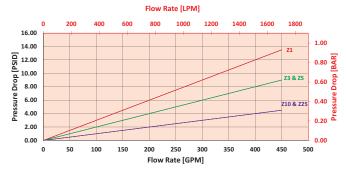

Flow Direction: Outside In

Element Nominal Dimensions: 16Q: 6.0" (150 mm) O.D. x 16.85" (430 mm) long

16QCLQF: 6.0" (150 mm) O.D. x 18.21" (463 mm) long 16QPML: 6.0" (150 mm) O.D. x 16.00" (405 mm) long 39Q: 6.0" (150 mm) O.D. x 38.70" (985 mm) long 39QCLQF: 6.0" (150 mm) O.D. x 40.01" (1016 mm) long 39QPML: 6.0" (150 mm) O.D. x 37.80" (960 mm) long


 $\triangle \textbf{P}_{\text{housing}}$

QF15 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle \textbf{P}_{\text{element}}$

16QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QCLQFZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 200 gpm (758 L/min) for QF1516QZ3D5C using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QF15 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 200 gpm. In this case, $\Delta P_{\text{element}}$ is 7 psi (.48 bar) according to the graph for the 16QZ3 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.14 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

$$V_f = 100 \text{ SUS } (21.3 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .67$$

$$\Delta P_{\text{filter}} = 2 \text{ psi} + (7 \text{ psi} * .67) = 6.7 \text{ psi}$$

 $\Delta P_{\text{filter}} = .14 \text{ bar} + (.48 \text{ bar} * .67) = .46 \text{ bar}$

Pressure Drop **Information** Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f$ Plug this variable into the overall

Ele.	$\Delta \textbf{P}$	Ele.	$\Delta \textbf{P}$	Ele.	$\Delta \textbf{P}$
16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
16QZ5		39QPMLAS- 3V			
16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
16QZ25	0.01	39QPMLAS- 10V	0.01		

In-Line Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder QF15:

QF15 —	(2 BOX 3	BOX 4 B	OX 5 BOX 6 BOX 7 BOX 8 BOX	(9
Example: NOTE:	One option per	box		
QF15 – 16		BOX 4 B	3 - BOX 6 BOX 7 BOX 8 BOX 7 D5	C = QF1516QZ3D5C
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	Element Length (in)	Element Style	Media Type	Micron Rating
QF15	16	Q QCLQF	Z = Excellement® Z-Media® (synthetic) AS = Anti-Stat Pleat media (synthetic)	1 = 1 μ Z-Media [®] 3 = 3 μ AS and Z-Media [®]
	39	QPML	W = W media (water removal)	5 = 5 μ AS and Z-Media [®] 10 = 10 μ AS and Z-Media [®] 25 = 25 μ Z-Media [®]

BOX 6	BOX 7		BOX 8
Housing Seal Material		Porting	Bypass Setting
Omit = Buna N V = Viton®	P24 = 1½" NPTF P32 = 2" NPTF P40 = 2½" NPTF P48 = 3" NPTF S32 = SAE-32 B24 = ISO 228 G-1½" B32 = ISO 228 G-2" B40 = ISO 228 G-2½" B48 = ISO 228 G-3"	F24 = 1½" SAE 4-bolt flange Code 61 F32 = 2" SAE 4-bolt flange Code 61 F40 = 2½" SAE 4-bolt flange Code 61 F48 = 3" SAE 4-bolt flange Code 61 F24M = 1½" SAE 4-bolt flange Code 61 F32M = 2" SAE 4-bolt flange Code 61 F40M = 2½" SAE 4-bolt flange Code 61 F40M = 3" SAE 4-bolt flange Code 61 F48M = 3" SAE 4-bolt flange Code 61 Code 61	Omit = 30 psi cracking 15 = 15 psi cracking 40 = 40 psi cracking 50 = 50 psi cracking X = Blocked bypass

BOX 9

Ι.	воху				
			Dirt Alarm [®] Options		
Omit =			None		
	Visual	D5 = D5C =	Standard differential pressure gauge Visual pop-up D5 in cap D5 mounted opposite standard location		
	Visual with Thermal Lockout	D8C =	Visual w/ thermal lockout D8 in cap D8 mounted opposite standard location		
	Electrical	MS5LC = MS10 = MS10LC = MS11 = MS12 = MS12LC = MS16 = MS16LC =	Electrical w/ 12 in. 18 gauge 4-conductor cable Low current MS5 Electrical w/ DIN connector (male end only) Low current MS10 Electrical w/ 12 ft. 4-conductor wire Electrical w/ 5 pin Brad Harrison connector (male end only) Low current MS12 Electrical w/ weather-packed sealed connector Low current MS16 Electrical w/ 4 pin Brad Harrison male connector		
	Electrical with Thermal Lockout	MS5LCT = MS10T = MS10LCT = MS12LT = MS12LCT = MS16LCT = MS16LCT =	MS5 (see above) w/ thermal lockout Low current MS5T MS10 (see above) w/ thermal lockout Low current MS10T MS12 (see above) w/ thermal lockout Low current MS12T MS16 (see above) w/ thermal lockout Low current MS16T Low current MS16T Low current MS17T		
	Electrical Visual		Supplied w/ threaded connector & light Supplied w/ 5 pin Brad Harrison connector & light (male end)		
	Electrical Visual with MS13DCLCT = Low current		MS14 (see above), direct current, w/ thermal lockout		

MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5, plus the letter V. Example: 16QZ1V
- Box 3. QCLQF are CoreCentric® coreless elements housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.
- Box 4. For option W, Box 3 must equal Q.
- Box 6. All elements for this filter are supplied with Viton® seals. Seal designation in Box 6 applies to housing only. Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 7. F24M, F32M, F40M and F48M are supplied with metric flange mounting holes.

Integral inlet and outlet test points are standard on all models.

Base-Ported Filter QLF15

Features and Benefits

- In-line version also available
- Element changeout from the top minimizes oil spillage
- Available with optional core assembly to accommodate coreless elements
- Offered with standard Q, QPML deep-pleated and QCLQF coreless elements in 16" and 39" lengths with Viton® seals as the standard
- Offered in pipe, SAE straight thread, and flange porting
- Integral inlet and outlet test points are standard on all models
- Various Dirt Alarm® options

500 gpm 1900 L/min 1500 psi 100 bar

KF5

K9

Flow Rating:	Up to 500 gpm (1900 L/min) for 150 SUS (32 cSt) fluids	Filter Housing Specifications
Max. Operating Pressure:	1500 psi (100 bar)	Housing
Min. Yield Pressure:	4900 psi (340 bar), per NFPA T2.6.1	Specifications

QLF15

Porting Base & Cap: Ductile Iron

Element Case: Steel

Weight of QLF15-16Q: 121.0 lbs. (55.0 kg) Weight of QLF15-39Q: 180.0 lbs. (82.0 kg) Element Change Clearance: 16Q 12.00" (305 mm)

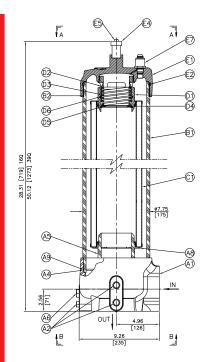
39Q 33.80" (859 mm)

Full Flow: 55 psi (4 bar)

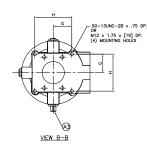
Rated Fatigue Pressure: 800 psi (55 bar), per NFPA T2.6.1-R1-2005 Temp. Range: -20°F to 225°F (-29°C to 107°C)

Bypass Setting: Cracking: 30 psi (2 bar)

Type Fluid Appropriate Schroeder Media


Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® media (synthetic) High Water Content All Z-Media® and ASP® media (synthetic)


> **Invert Emulsions** 10 μ and 25 μ Z-Media® and 10 μ ASP® media (synthetic) Water Glycols 3, 5, 10, and 25 µ Z-Media® and all ASP® media (synthetic)


Phosphate Esters All Z-Media® with H (EPR) seal designation and all ASP® media (synthetic)

QLF15

Base-Ported Filter

– A-LF-6232

PORT SIZE DIM G DIM H

1½" (38) 2.00 (51) 4.00 (102)

2" (51) 2.00 (51) 4.00 (102)

2½ (64) 2.00 (51) 4.00 (102)

3" (76) 2.50 (63.5) 4.00 (102)

DIMENSIONAL DATA

Metric dimensions in ().

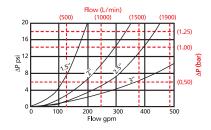
Element Performance Information & Dirt Holding Capacity

		Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element		ß _X ≥ 75	$B_X \ge 100$	$\beta_{\chi} \geq 200$	β _X (c) ≥ 200	$\beta_{\chi}(c) \ge 1000$
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0

Element		DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
	Z1	276	CLQFZ1	307	PMLZ1	307
	Z3	283	CLQFZ3	315	PMLZ3	315
16Q	Z5	351	CLQFZ5	364	PMLZ5	364
	Z10	280	CLQFZ10	306	PMLZ10	330
	Z25	254	CLQFZ25	278	PMLZ25	299
	Z1	974	CLQFZ1	1259	PMLZ1	1485
	Z3	1001	CLQFZ3	1293	PMLZ3	1525
39Q	Z5	954	CLQFZ5	1302	PMLZ5	1235
	Z10	940	CLQFZ10	1214	PMLZ10	1432
	Z25	853	CLQFZ25	1102	PMLZ25	1299

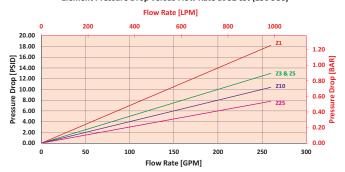
Element Collapse Rating: Q and QPML: 150 psid (10 bar), QCLQF: 100 psid (7 bar)

Flow Direction: Outside In

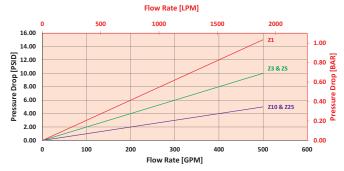

Element Nominal Dimensions: 16Q: 6.0" (150 mm) O.D. x 16.85" (430 mm) long 16QCLQF: 6.0" (150 mm) O.D. x 18.21" (463 mm) long

16QCLQF: 6.0" (150 mm) O.D. x 18.21" (463 mm) long 16QPML: 6.0" (150 mm) O.D. x 16.00" (405 mm) long 39Q: 6.0" (150 mm) O.D. x 38.70" (985 mm) long 39QCLQF: 6.0" (150 mm) O.D. x 40.01" (1016 mm) long 39QPML: 6.0" (150 mm) O.D. x 37.80" (960 mm) long

Base-Ported Filter QLF1


 $\triangle \textbf{P}_{\text{housing}}$

QLF15 \triangle **P**_{housing} for fluids with sp gr (specific gravity) = 0.86:


 $\triangle \textbf{P}_{\text{element}}$

16QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QCLQFZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$

Exercise:

Determine ΔP_{filter} at 200 gpm (758 L/min) for QLF1516QZ3D5C using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QLF15 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 200 gpm. In this case, $\Delta P_{\text{element}}$ is 7 psi (.48 bar) according to the graph for the 16QZ3 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

$$V_f = 100 \text{ SUS } (21.3 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .67$$

$$\Delta P_{\text{filter}} = 2 \text{ psi} + (7 \text{ psi} * .67) = 6.7 \text{ psi}$$

 $\Delta P_{\text{filter}} = 14 \text{ bar} + (.48 \text{ bar} * .67) = .46 \text{ bar}$

Pressure Drop **Information** Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f$ Plug this variable into the overall pressure drop equation

Ele.	$\triangle \mathbf{P}$	Ele.	$\Delta \textbf{P}$	Ele.	$\Delta \textbf{P}$
16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
16QZ25	0.01	39QPMLAS- 10V	0.01		

QLF15

Base-Ported Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder QF15:

	QF15
Ì	Example: NOTE: One option per box
	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9
	QF15 16 Q Z 3 D5C = QF1516QZ3D5C

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series		Element Style	Media Type	Micron Rating
01.511	16	Q	Z = Excellement® Z-Media® (synthetic)	1 = 1 μ Z-Media®
QLF15	39	QCLQF	AS = Anti-Stat Pleat media (synthetic)	3 = 3 μ AS and Z-Media®
WQLF (Water)		QPML	W = W media (water removal)	5 = 5 μ AS and Z-Media®
			Water System Element Options	10 = 10 μ AS and Z-Media®
			QM60 = Q size 60 μ M media (reusable metal)	25 = 25 μ Z-Media®
			OM150 - O size 150 u M media (reusable metal)	

			- / 25 P 2 1110 and
	QM15	50 = Q size 150 μ M media (reusable me	etal)
BOX 6		BOX 7	BOX 8
Housing Seal Material		Porting	Bypass Setting
Omit = Buna N V = Viton®	P24 = 1½" NPTF P32 = 2" NPTF P40 = 2½" NPTF P48 = 3" NPTF S32 = SAE-32 B24 = ISO 228 G-1½" B32 = ISO 228 G-2 B40 = ISO 228 G-2½" B48 = ISO 228 G-3"	F24 = 1½" SAE 4-bolt flange Code 61 F32 = 2" SAE 4-bolt flange Code 61 F40 = 2½" SAE 4-bolt flange Code 61 F48 = 3" SAE 4-bolt flange Code 61 F24M = 1½" SAE 4-bolt flange Code 61 F32M = 2" SAE 4-bolt flange Code 61 F40M = 2½" SAE 4-bolt flange Code 61 F40M = 3" SAE 4-bolt flange Code 61 F48M = 3" SAE 4-bolt flange	Omit = 30 psi cracking 15 = 15 psi cracking 40 = 40 psi cracking 50 = 50 psi cracking X = Blocked bypass

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4, and 5 plus the letter V. Example: 16QZ1V
- Box 3. QCLQF are CoreCentric® coreless elements housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.
- Box 4. For option W, Box 3 must equal Q.
- Box 6. All elements for this filter are supplied with Viton® seals. Seal designation in Box 6 applies to housing only. Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 7. B24, B32 and B40 are supplied with metric mounting holes. F24M, F32M, F40M and F48M are supplied with metric flange mounting holes.

Integral inlet and outlet test points are standard on all models.

BOX 9							
	Dirt Alarm [®] Options						
	Omit = None						
Visual	DPG = Standard differential pressure gauge D5 = Visual pop-up D5C = D5 in cap						
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout D8C = D8 in cap						
Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector						
Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS16T						
Electrical Visual	MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)						
Electrical Visual with Thermal Lockout	MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT						

Stainless Steel Base-Ported Filter SSQLF1

Features and Benefits

- In-line version also available
- Element changeout from the top minimizes oil spillage
- Offered with standard Q and QPML deep-pleated coreless elements in 16" and 39" lengths with Viton® seals as the standard
- Offered in pipe, SAE straight thread, and flange porting
- Integral inlet and outlet test points are standard on all models
- Various Dirt Alarm® options
- All stainless steel provides compatibility with water-based fluids

500 gpm 1900 L/min 1500 psi 100 bar

KF5

K9

Flow Rating: Up to 500 gpm (1900 L/min) for 150 SUS (32 cSt) fluids

Max. Operating Pressure: 1500 psi (100 bar)

Min. Yield Pressure: 4500 psi (310 bar), per NFPA T2.6.1

Rated Fatigue Pressure: Contact Factory

Temp. Range: -20°F to 225°F (-29°C to 107°C)

Bypass Setting: Cracking: 30 psi (2 bar)

Full Flow: 55 psi (4 bar)

Porting Base & Cap: Stainless Steel

Element Case: Stainless Steel

Weight of SSQLF15-16Q: 163.0 lbs. (74.0 kg) Weight of SSQLF15-39Q: 240.0 lbs. (109.0 kg) Element Change Clearance: 16Q 12.00" (305 mm)

39Q 33.80" (859 mm)

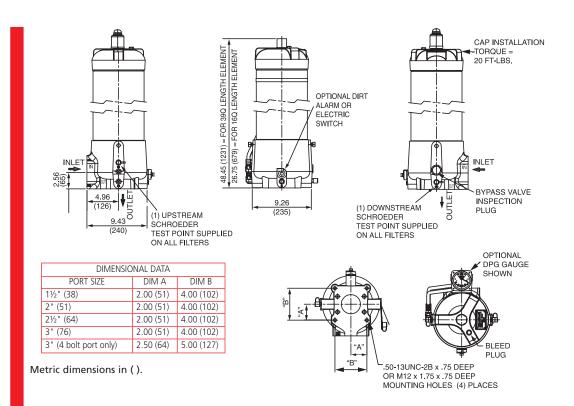
Filter Housing **Specifications**

SSQLF15

	Type Fluid	Appropriate	Schroeder	Media
--	------------	--------------------	-----------	-------

Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® media (synthetic)

High Water Content All Z-Media® and ASP® media (synthetic)


Invert Emulsions 10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)

Water Glycols 3, 5, 10 and 25 μ Z-Media[®] and all ASP[®] media (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and all ASP® media (synthetic)

Stainless Steel Base-Ported Filter

Element Performance Information & Dirt Holding Capacity

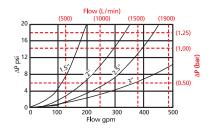
			tio Per ISO 4572/NF rticle counter (APC) cali	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element		ß _X ≥ 75	$B_X \ge 100$	$\beta_X \ge 200$	β _X (c) ≥ 200	$\beta_{X}(c) \ge 1000$
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLOFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0

Elen	nent	DHC (gm)	Element	DHC (gm)
	Z1	276	PMLZ1	307
	Z3	283	PMLZ3	315
16Q	Z5	351	PMLZ5	364
	Z10	280	PMLZ10	330
	Z25	254	PMLZ25	299
	Z1	974	PMLZ1	1485
	Z3	1001	PMLZ3	1525
39Q	Z5	954	PMLZ5	1235
	Z10	940	PMLZ10	1432
	Z25	853	PMLZ25	1299

Element Collapse Rating: Q and QPML: 150 psid (10 bar)

Flow Direction: Outside In

Element Nominal Dimensions: 16Q: 6.0" (150 mm) O.D. x 16.85" (430 mm) long

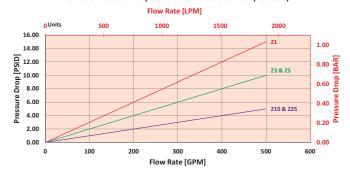

16QPML: 6.0" (150 mm) O.D. x 16.00" (405 mm) long 39Q: 6.0" (150 mm) O.D. x 38.70" (985 mm) long 39QPML: 6.0" (150 mm) O.D. x 37.80" (960 mm) long

Stainless Steel Base-Ported Filter

SSQLF15

 $\triangle \mathbf{P}_{\text{housing}}$

SSQLF15 \triangle **P**_{housing} for fluids with sp gr (specific gravity) = 0.86:


 $\triangle P_{element}$

39QZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QPMLZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 200 gpm (758 L/min) for SSQLF1516QZ3P48D9C using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the SSQLF housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 200 gpm. In this case, $\Delta P_{\text{element}}$ is 7 psi (.48 bar) according to the graph for the 16QZ3 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathsf{V}_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\Delta \mathbf{P}_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

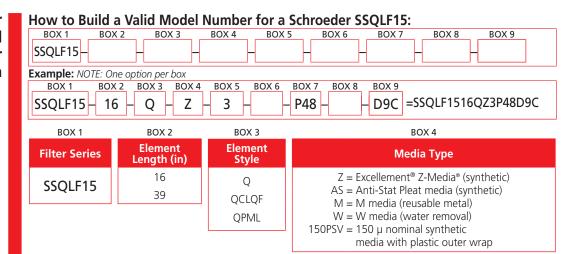
 $V_f = 100 \text{ SUS } (21.3 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .67$

$$\Delta P_{\text{filter}} = 2 \text{ psi} + (7 \text{ psi} * .67) = 6.7 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .14 \text{ bar} + (.48 \text{ bar} * .67) = .46 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity


Note: If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_f$ Plug this variable into the overall pressure drop equation

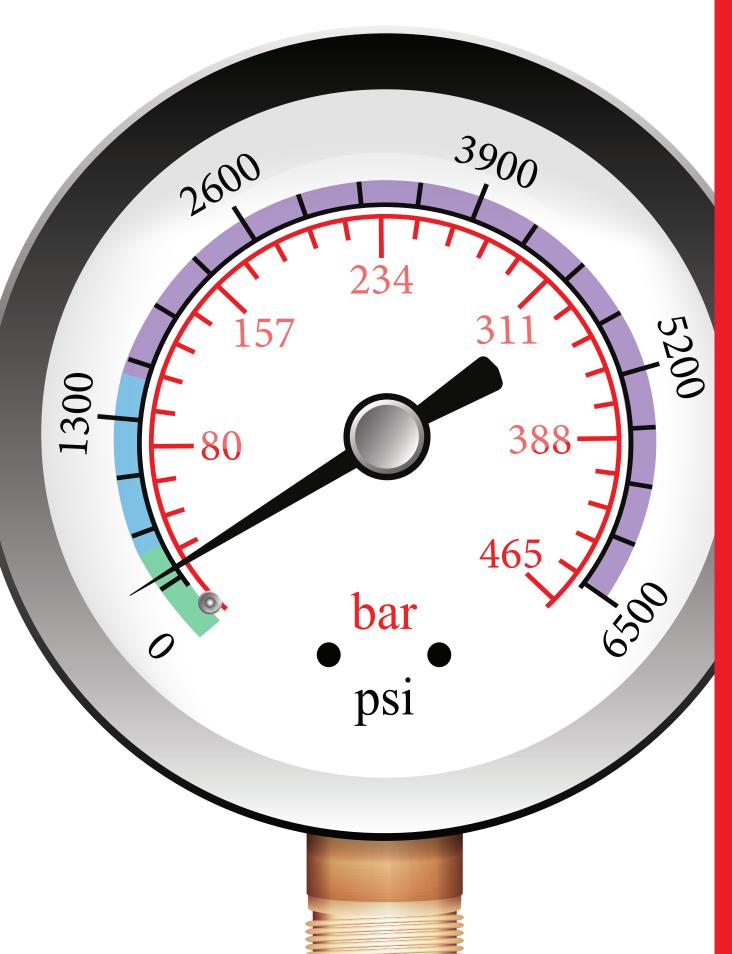
Ele.	$\wedge \mathbf{P}$	Ele.	$\wedge \mathbf{P}$
Eie.	ΔΡ	Eie.	ΔΡ
16QAS3V	0.04	16QPMLZ1	0.08
16QAS5V	0.04	16QPMLZ3	0.05
16QAS10V	0.03	16QPMLZ5	0.05
16QPMLAS3V	0.05	16QPMLZ10	0.04
16QPMLAS5V	0.05	16QPMLZ25	0.02
16QPMLAS10V	0.04	39QAS3V	0.01
16QZ1	0.09	39QAS5V	0.01
16QZ3	0.04	39QAS10V	0.01
16QZ5	0.04	39QPMLAS3V	0.02
16QZ10	0.03	39QPMLAS5V	0.02
16QZ25	0.01	39QPMLAS10V	0.01

Stainless Steel Base-Ported Filter

Filter Model Number Selection

BOX 5	BOX 6	BOX 7
Micron Rating	Housing Seal Material	Porting
1 = 1 μ Z-Media® 3 = 3 μ AS and Z-Media® 5 = 5 μ AS and Z-Media® 10 = 10 μ AS and Z-Media® 25 = 25 μ M and Z-Media® 60 = 60 μ M media 150 = 150 μ M-media or 150 PSV W = water removal media	Omit = Buna N H = EPR V = Viton®	P24 = 1½" NPTF P32 = 2" NPTF P40 = 2½" NPTF P48 = 3" NPTF S32 = SAE-32 B24 = ISO 228 G-1½" B32 = ISO 228 G-2" B40 = ISO 228 G-2½" B48 = ISO 228 G-3" F24 = 1½" SAE 4-bolt flange Code 61 F32 = 2" SAE 4-bolt flange Code 61 F40 = 2½" SAE 4-bolt flange Code 61 F48 = 3" SAE 4-bolt flange Code 61 F24M = 1½" SAE 4-bolt flange Code 61 F32M = 2" SAE 4-bolt flange Code 61 F32M = 2" SAE 4-bolt flange Code 61 F40M = 2½" SAE 4-bolt flange Code 61 F40M = 2½" SAE 4-bolt flange Code 61 F40M = 2½" SAE 4-bolt flange Code 61

NOTES:


- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5 plus the letter V. Example: 16QZ1V
- Box 4. For options W, 150PSV, M25, M60, and M150, Box 3 must equal Q.
- Box 6. All elements for this filter are supplied with Viton® seals. Seal designation in Box 6 applies to housing only. Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 7. B24, B32 and B40 are supplied with metric mounting holes. F24M, F32M, F40M and F48M are supplied with metric flange mounting holes.

Integral inlet and outlet test points are standard on all models.

50/10		20/13				
Bypass Setting	Dirt Alarm [®] Options					
Omit = 30 psi cracking		Omit = None				
50 = 50 psi cracking X = Blocked bypass	Visual	DPG = Standard differential pressure gauge D9 = Visual pop-up in base (stainless steel) D9C = D9 in cap (stainless steel)				

BOX 9

BOX 8

Section 5 Low Pressure Filters Selection Guide

			Pressure psi (bar)	Flow gpm (L/ min)	Element Length/Size	Page
	Top-Ported	Low Pressure	Filters			
		IRF	100 (7)	100 (380)	K, KK, KD, KKD	209
		TF1	300 (20)	30 (120)	Α	215
		KF3	300 (20)	100 (380)	K, KK, 27K	219
		KL3	300 (20)	120 (455)	K, KK, 27K, 18LC	223
		LF1-2"	300 (20)	120 (455)	18LC	227
		MLF1	300 (20)	200 (760)	K	231
		RLD	350 (24)	100 (380)	25DN, 40D	235
	Tank-Moun	ted (In-Tank/	Tank Top) Low	/ Pressure Fil	ters	
		GRTB	100 (7)	100 (380)	KBG	239
psi)		MTA	100 (7)	15 (55)	3TA	243
) OC		MTB	100 (7)	35 (135)	3TB, 5TB	247
0 5(ZT	100 (7)	40 (150)	8Z	251
(up to 500		KFT	100 (7)	100 (380)	K, KK, KD, KKD, 27K	255
		RT	100 (7)	100 (380)	K, KK, KD, KKD, 27K	259
Filters		RTI	100 (7)	120 (455)	KI, KKI, 27KI	263
		LRT	100 (7)	150 (570)	18L, 18LD	267
Low Pressure		ART	145 (10)	225 (850)	85Z1, 85Z3, 85Z5, 85Z10, 85Z25	271
res		BRT	145 (10)	160 (600)	2RBZ10/25, 3RBZ10/25, 4RBZ10/25, 6RBZ10/25	277
≥		TRT	145 (10)	634 (2400)	2RTZ10/25, 3RTZ10/25, 4RTZ10/25, 6RTZ10/25	281
2		BFT	100 (7)	300 (1135)	BB	289
		QT	100 (7)	450 (1700)	16Q, 16QPML, 39Q, 39QPML	293
	Special Feat	ure Tank-Mo	unted Low Pre	essure Filters		
	Internal	KTK	100 (7)	100 (380)	K, KK, 27K	297
	Internal	LTK	100 (7)	150 (570)	18L	301
	Severe Duty	/ Tank-Mount	ed			
		MRT	900 (62)	150 (570)	18L	305
	Spin-On Lov	w Pressure Filt	ters			
		PAF1	100 (7)	20 (75)	6P	311
		MAF1	100 (7)	50 (190)	M, 10M	315
		MF2	150 (10)	60 (230)	M, 10M	319

Flow Rating:

Temp. Range:

Bypass Setting:

Porting Head:

Element Case:

Weight of IRF-1K:

Weight of IRF-2K:

Element Change Clearance:

100 psi (7 bar)

400 psi (28 bar), per NFPA T2.6.1

-20°F to 225°F (-29°C to 107°C)

Cracking: 25 psi (1.7 bar) Full Flow: 48 psi (3.3 bar)

Sand Cast Aluminum

13.5 lbs. (6.12 kg) 17.0 lbs. (7.71 kg)

Steel

90 psi (6 bar), per NFPA T2.6.1-2005

Max. Operating Pressure:

Rated Fatigue Pressure:

Min. Yield Pressure:

Features and Benefits

■ Low pressure top servicing in-line filter

- Meets HF4 automotive standard
- Unique side mounting flange provides reliable seal arrangement between head and bowl
- The use of K-size elements allows consolidation of inventoried replacement elements
- Single and double length options provide optimal size for specific applications
- Also available with new DirtCatcher® elements (KDZ and KKDZ)
- Various Dirt Alarm® options

Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids

8.0" (205 mm) for 1K; 17.50" (445 mm) for KK

100 gpm 380 Ľ/min 100 psi 7 bar

IRF

KF3

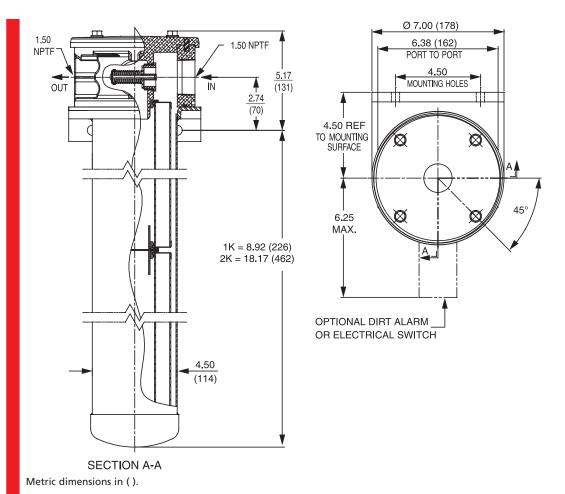
KL3

MLF1

KFT

KTK

Type Fluid	Appropriate Schroeder Media
Petroleum Based Fluids	All E media (cellulose), Z-Media® and ASP® media (synthetic)
High Water Content	All Z-Media® and ASP® media (synthetic)
Invert Emulsions	10 and 25 μ Z-Media® (synthetic), 10 μ ASP® media (synthetic)
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic), 3, 5, and 10 μ ASP® media (synthetic)
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation and all ASP® Media (synthetic)
Skydrol [®]	3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP® media (synthetic)


Fluid Compatibility

Filter

Housing

Specifications

For Tank-

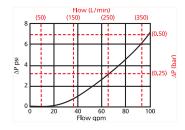
Element Performance Information & Dirt Holding Capacity

		Ratio Per ISO 4572/NFF article counter (APC) ca	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _X ≥ 75	$\beta_{\boldsymbol{X}} \geq 100$	$\beta_{\mathbf{X}}(\mathbf{c}) \ge 200$	$\beta_{\mathbf{X}}(\mathbf{c}) \ge 1000$	
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5

	DHC												
Element	(g)												
KZ1	112	KKZ1	224	27KZ1	336	KDZ1	89	KKDZ1	188	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KDZ3	71	KKDZ3	150	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KDZ5	100	KKDZ5	210	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KDZ10	80	KKDZ10	168	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KDZ25	81	KKDZ25	171	KZW25	79	KKZW25	158

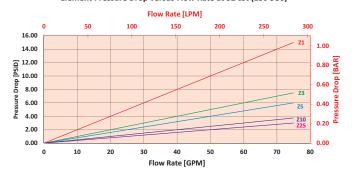
Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In

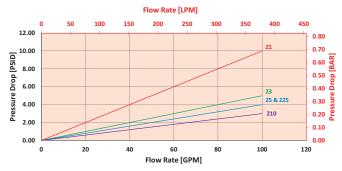

 $\textbf{Element Nominal Dimensions:} \quad \text{K:} \qquad 3.9 \text{" (99 mm) O.D. x 9.0" (230 mm) long}$

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

IRF


 $\triangle \boldsymbol{P}_{\text{housing}}$

IRF $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle P_{element}$

1KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2KZ/KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 70 gpm (265.3 L/min) for IRF2KZ10S20Y2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 3.5 psi (.24 bar) on the graph for the IRF housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 70 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 2 psi (.14 bar) according to the graph for the 2KZ10 element.

Because the viscosity in this sample is 160 SUS (24 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle P_{\text{filter}}$, is calculated by adding $\triangle P_{\text{housing}}$ with the true element pressure differential, ($\triangle P_{\text{element}} * v_f$). The $\triangle P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3.5 \text{ psi } [.24 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 2 \text{ psi } [.14 \text{ bar}]$

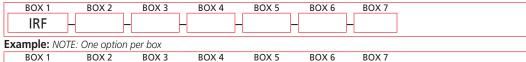
 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 3.5 \text{ psi} + (2 \text{ psi} * 1.1) = 5.7 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .24 \text{ bar} + (.14 \text{ bar} * 1.1) = .39 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity


Noto

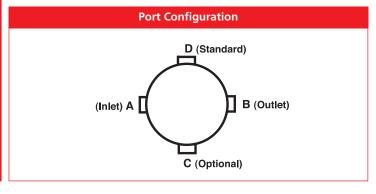
If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f$. Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
К3	0.25	2K3	0.12
K10	0.09	2K10	0.05
K25	0.02	2K25	0.01
KAS3	0.10	2KAS3	0.05
KAS5	0.08	2KAS5	0.04
KAS10	0.05	2KAS10	0.03
KDZ1	0.24	2KDZ1	0.12
KDZ3	0.12	2KDZ3	.0.6
KDZ5	0.10	2KDZ5	0.05
KDZ10	0.06	2KDZ10	0.03
KDZ25	0.04	2KDZ25	0.02
KZW1	0.43	2KZW1	-
KZW3	0.32	2KZW3	0.16
KZW5	0.28	2KZW5	0.14
KZW10	0.23	2KZW10	0.12
KZW25	0.14	2KZW25	0.07

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder IRF:

BOX 1	BOX 2	BOX 3	
Filter Series	Number and Size of Elements	Element Type	
IRF	1 = K, KK	Omit = E media (cellulose)	
	2 = K	AS = Anti-Static Pleat Media	
		Z = Excellement® Z-Media® (synthetic)	
		ZW = Aqua-Excellement® ZW media	
		W = Water Removal media	
		M = M media (reusable metal)	
		DZ = DirtCatcher® Excellement® Z-Media®	


BOX 4 BOX 5 BOX 6 Seal Material **Micron Rating Inlet Porting** $1 = 1 \mu$ (Z, ZW and DZ media) Omit = Buna N P16 = 1" NPTF $3 = 3 \mu$ (E, AS, Z, ZW and DZ media) H = EPR $P20 = 1\frac{1}{4}$ " NPTF S16 = SAE-16 $5 = 5 \mu$ (AS, Z, ZW and DZ media) V = Viton® $10 = 10 \mu$ (E, AS, Z, ZW and DZ media) S20 = SAE-20 $25 = 25 \mu$ (E, AS, Z, ZW and DZ media) F20 = 11/4" SAE 4-bolt flange Code 61 $60 = 60 \,\mu$ (M media) F24 = 1½" SAE 4-bolt flange Code 61 B24 = ISO 228 G-1½"

BOX 7

Dirt Alarm [®] Options				
Omit = None				
Located @ Port D (Standard)	Visual	Y2 = Back-mounted tri-color gauge		
	Electrical	ES = Electrical switch		
		ES1 = Heavy-duty electrical switch with conduit connector		
Located @ Port C (Optional)	Visual	Y2R = Back-mounted gauge mounted on opposite side of standard location		
	Electrical	ESR = Electrical switch mounted on opposite side of standard location		
		ES1R = Heavy-duty electrical switch with conduit connector		

NOTES:

- Box 2. Number of elements must equal 1 when using KK elements.
- Box 3. Replacement element part numbers are identical to contents of Boxes 2, 3, 4, and 5. Double stacking of K-size elements can be replaced by single KK elements.
- Box 5. Viton® is a registered trademark of DuPont Dow Elastomers.

Model No. of filter in photograph is TF11AZ10S.

Features and Benefits

■ Offered in pipe, SAE straight thread, flange and ISO 228 porting

- Various Dirt Alarm® options
- Available with No-Element indicator
- Available with NPTF inlet and outlet female test ports
- Available with magnet inserts
- Available with housing drain plug

30 gpm 120 L/min 300 psi 20 bar

TF1

KF3

MLF1

KFT

KTK

Compatibility

Fluid

Filter Flow Rating: Up to 30 gpm (120 L/min) for 150 SUS (32 cSt) fluids Housing Max. Operating Pressure: 300 psi (20 bar) **Specifications** Min. Yield Pressure: 1200 psi (80 bar), per NFPA T2.6.1

270 psi (19 bar), per NFPA T2.6.1-2005 Rated Fatigue Pressure:

> Temp. Range: -20°F to 225°F (-29°C to 107°C) Bypass Setting:

Cracking: 30 psi (2 bar) Full Flow: 51 psi (4 bar)

Porting Head: Cast Aluminum Element Case: Steel

5.1 lbs. (2.3 kg) Weight of TF1-1A: Weight of TF1-2A: 6.3 lbs. (2.9 kg) Element Change Clearance: 3.50" (90 mm)

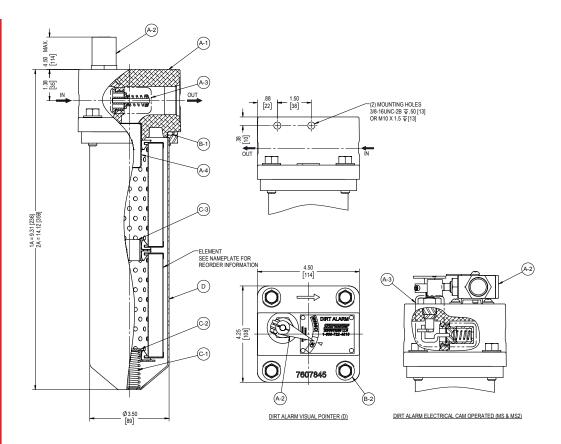
Type Fluid Petroleum Based Fluids **High Water Content**

Appropriate Schroeder Media All E media (cellulose) and Z-Media® (synthetic)

All Z-Media® (synthetic)

10 and 25 μ Z-Media® (synthetic)

3, 5, 10 and 25 µ Z-Media® (synthetic)


All Z-Media® (synthetic) with H (EPR) seal designation

Skydrol®

Invert Emulsions Water Glycols

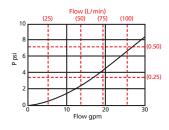
Phosphate Esters

3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

Metric dimensions in ().

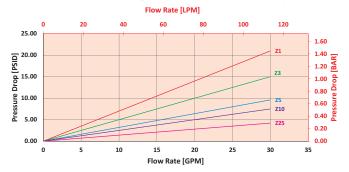
Element Performance Information & Dirt Holding Capacity

		tio Per ISO 4572/NF article counter (APC) calib	Filtration Ratio	per ISO 16889 ted per ISO 11171	
Element	$B_x \ge 75$	$B_x \ge 100$	$B_x \ge 200$	$\beta_x(c) \geq 200$	$\beta_x(c) \geq 1000$
AZ1	<1.0	<1.0	<1.0	<4.0	4.2
AZ3	<1.0	<1.0	<2.0	<4.0	4.8
AZ5	2.5	3.0	4.0	4.8	6.3
AZ10	7.4	8.2	10.0	8.0	10.0
AZ25	18.0	20.0	22.5	19.0	24.0

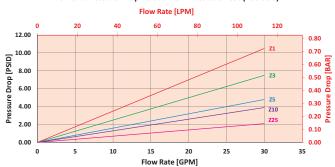

Element	DHC (gm)
A3	16
A10	13
AZ1	25
AZ3	26
AZ5	30
AZ10	28
AZ25	28

Element Collapse Rating: 150 psid (10 bar) **Flow Direction:** Outside In

Element Nominal Dimensions: 3.0" (75 mm) O.D. x 4.5" (115 mm) long


 $\triangle P_{\text{housing}}$

TF1 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle \boldsymbol{P}_{element}$

AZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2AZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for TF11AZ3PD5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the TF1 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 7.5 psi (.52 bar) according to the graph for the AZ3 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7.5 \text{ psi } [.52 \text{ bar}]$

 $V_f = 175 \text{ SUS } (37.2 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.2$

 $\Delta \mathbf{P}_{\text{filter}} = 3 \text{ psi} + (7.5 \text{ psi} * 1.2) = 12 \text{ psi}$

<u>OR</u>

 $\Delta P_{\text{filter}} = .21 \text{ bar} + (.52 \text{ bar} * 1.2) = .83 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta \textbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \textbf{P}_f \text{ Plug}$

this variable into the overall pressure drop equation. **Ele.** $\triangle P$ **Ele.** $\triangle P$

Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
А3	0.53	AA3	0.27
A10	0.36	AA10	0.18
A25	0.05	AA25	0.03

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder TF1:

E	вох 1 ТF1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	
Exa	ample:	NOTE: Only	hay & may	contain mai	o than and	antion			
	p.c.	INOIL. OIIIy	DOX 6 IIIay	COITLAIITITIOI	e man one	е ориоп			
	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	

111	<i></i>	73	כטוכאוווו –	
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	Number of Elements	Element Part Number	Seal Material	Magnet Option
TF1	1	A3 = 3 μ E media (cellulose) A10 = 10 μ E media (cellulose)	Omit = Buna N H = EPR	Omit = None M = Magnet
	2	A25 = 25 μ E media (cellulose)	V = Viton®	inserts
		AZ1 = 1 μ Excellement® Z-Media® (synthetic) AZ3 = 3 μ Excellement® Z-Media® (synthetic) AZ5 = 5 μ Excellement® Z-Media® (synthetic)	H.5 = Skydrol® compatibility	
		AZ10 = 10 µ Excellement® Z-Media® (synthetic) AZ25 = 25 µ Excellement® Z-Media® (synthetic) AZ25 = 25 µ Excellement® Z-Media® (synthetic)		
		AM10 = 10 μ M media (reusable metal) AM25 = 25 μ M media (reusable metal)		

BOX 6 Porting Options		BOX 7 Dirt Alarm® Options	BOX 8
P = 1" NPTF		Omit = None	Omit = None
S = SAE-16 B = ISO 228 G-1"	Visual	D = Pointer D5 = Visual pop-up	L = Two ¼" NPTF inlet
10 = 10 psi bypass setting 15 = 15 psi bypass	Visual with Thermal Lockout	D8 = Visual w/ thermal lockout	and outlet female test ports
setting 20 = 20 psi bypass setting 25 = 25 psi bypass		MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only)	N = No-Element indicator
setting 30 = 30 psi bypass setting 40 = 40 psi bypass	Electrical	MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)	G440 = ½" drain on bottom of housing
setting 60 = 60 psi bypass setting		MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector	

MS17LC = Electrical w/ 4 pin Brad Harrison male connector

MS5T = MS5 (see above) w/ thermal lockout

MS10T = MS10 (see above) w/ thermal lockout

MS12T = MS12 (see above) w/ thermal lockout

MS16T = MS16 (see above) w/ thermal lockout

MS = Cam operated switch w/ 1/2 " conduit

MS13 = Supplied w/ threaded connector & light

MS14 = Supplied w/ 5 pin Brad Harrison connector

MS13DCT = MS13 (see above), direct current, w/ thermal lockout

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

MS16LC = Low current MS16

MS5LCT = Low current MS5T

MS10LCT = Low current MS10T

MS12LCT = Low current MS12T

MS16LCT = Low current MS16T

MS17LCT = Low current MS17T

MS13DCLCT = Low current MS13DCT

MS14DCLCT = Low current MS14DCT

female connection

& light (male end)

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4. E media elements are only available with Buna N seals.
- Box 4. For option V, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol® is a registered trademark of Solutia Inc.
- Box 6. B porting option supplied with metric

75 = 75 psi bypass

Electrical

Thermal

Lockout

Electrical

Electrical

Thermal

Lockout

Visual with

Visual

with

setting

Features and Benefits

- Meets HF4 automotive standard
- Offered in pipe, SAE straight thread, flange and ISO 228 porting
- Various Dirt Alarm® options
- Available with No-Element indicator
- Available with NPTF inlet and outlet female test ports
- Available with magnet inserts
- Available with housing drain plug
- Takes the standard "K" element in K, KK or 27K lengths
- Allows consolidation of inventoried replacement elements by using K-size elements
- Also available with DirtCatcher® elements (KD & KKD)
- G Available with quality-protected GeoSeal® Elements (GKF3)

Part of Schroeder Industries Energy Savings Initiative

100 gpm 380 L/min 300 psi 20 bar

Filter Housing **Specifications**

Fluid

KF3

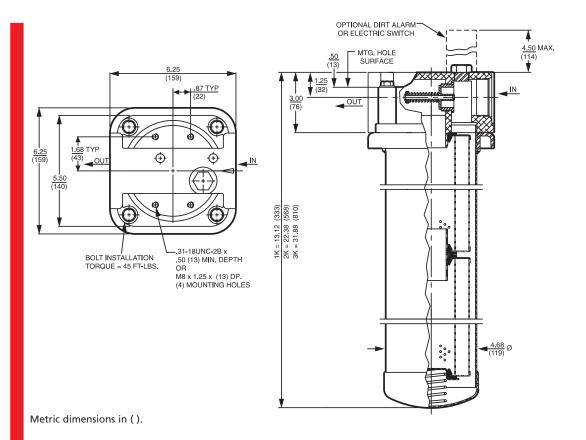
KFT

KTK

	MRT

Compatibility

Model No. of filter in photograph is KF31K10SD5.


Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	300 psi (20 bar)
Min. Yield Pressure:	1000 psi (70 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	290 psi (20 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 51 psi (4 bar)
Porting Head: Element Case:	Die Cast Aluminum Steel
Weight of KF3-1K: Weight of KF3-2K: Weight of KF3-3K:	10.5 lbs. (4.8 kg) 14.2 lbs. (6.4 kg) 18.5 lbs. (8.4 kg)
Element Change Clearance:	1.50" (40 mm) for all lengths

Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® media (synthetic) High Water Content All Z-Media® and ASP® Media (synthetic) Invert Emulsions 10 and 25 μ Z-Media® (synthetic), 10 μ ASP® media (synthetic) Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic), 3, 5, and 10 μ ASP® Media (synthetic)

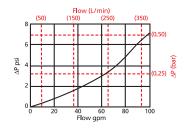
Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation and all ASP® media (synthetic)

Skydrol[®] 3, 5, 10 and 25 μ Z-Media[®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP® media (synthetic)

Element Performance Information & Dirt Holding Capacity

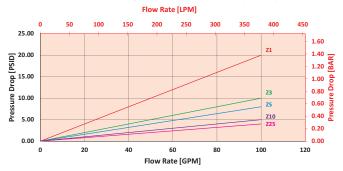
	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 111		
Element	β _{x} ≥ 75	$\beta_{\boldsymbol{X}} \ge 100$	$\beta_{\bm{X}} \geq 200$	β _{χ} (c) ≥ 200	β _X (c) ≥ 1000	
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2	
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8	
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3	
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0	
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0	
KZW1	N/A	N/A	N/A	<4.0	<4.0	
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8	
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4	
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6	
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5	

	DHC												
Element	(g)												
KZ1	112	KKZ1	224	27KZ1	336	KDZ1	89	KKDZ1	188	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KDZ3	71	KKDZ3	150	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KDZ5	100	KKDZ5	210	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KDZ10	80	KKDZ10	168	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KDZ25	81	KKDZ25	171	KZW25	79	KKZW25	158

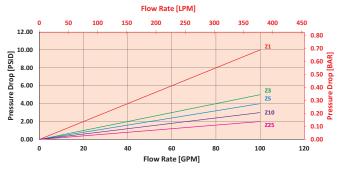

Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long


KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long $\triangle P_{\text{housing}}$

KF3 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle \textbf{P}_{\text{element}}$

KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2KZ/KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 70 gpm (265.3 L/min) for KF31KZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 4 psi (.27 bar) on the graph for the KF3 housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 70 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle P_{\text{filter}}$, is calculated by adding $\triangle P_{\text{housing}}$ with the true element pressure differential, ($\triangle P_{\text{element}} * v_f$). The $\triangle P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 4 \text{ psi } [.227 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta \mathbf{P}_{\text{filter}} = 4 \text{ psi} + (3 \text{ psi} * 1.1) = 7.7 \text{ psi}$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .27 \text{ bar} + (.21 \text{ bar} * 1.1) = .50 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate } x \Delta P_f$. Plug this variable into the overall pressure drop equation.

pressure drop equation.								
Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$			
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05			
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03			
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02			
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02			
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01			
KAS10	0.05	2KAS10/ KKAS10	0.03	K3K	0.08			
KDZ1	0.24	2KDZ1	0.12	3K10	0.03			
KDZ3	0.12	2KDZ3	0.06	3K25	0.01			
KDZ5	0.10	2KDZ5	0.05	3KAS3/ 27KAS3	0.03			
KDZ10	0.06	2KDZ10	0.03	3KAS5/ 27KAS5	0.02			
KDZ25	0.04	2KDZ25	0.02	3KAS10/ 27KAS10	0.02			
KZW1	0.43	2KZW1	-					
KZW3	0.32	2KZW3/ KKZW3	0.16					
KZW5	0.28	2KZW5/ KKZW5	0.14					
KZW10	0.23	2KZW10/ KKZW10	0.12					
KZW25	0.14	2KZW25/ KKZW25	0.07					

Filter Model Number Selection

GKF3

(GeoSeal®)

WKF3

(Water)

3K

2KG

3KG

BOX 5

Seal Material

Omit = Buna N

H = EPR

V = Viton®

W = Buna N

Visual

 $H.5 = \frac{Skydrol^{®}}{Compatibility}$

GeoSeal®

1KG,KKG,27KG

Highlighted product eligible for QuickDelivery

How to Build a Valid Model Number for a Schroeder KF3: BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10

Filter Series	Number & Size	Media Type	Micron Rating			
BOX 1	BOX 2	BOX 3	BOX 4			
KF3 – 1I	K 2 BOX 3 BOX 4 E	30X 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 = KF	31KZ10SD5			
Example: N	Example: NOTE: Only box 10 may contain more than one option					
KF3-						

Number & Size of Elements Omit = E media (cellulose) 1K, KK,27K KF3 AS = Anti-Static Pleat Media 2K

Z = Excellement® Z-Media® (synthetic)

ZW = Aqua-Excellement® ZW media

W = Water Removal media M = M Media (reusable metal)

DZ = DirtCatcher® Excellement® Z-Media®

Water System Element Options

 $KM10 = K \text{ size } 25 \mu M \text{ media (reusable metal)}$ $KM25 = K \text{ size } 10 \mu \text{ M media (reusable metal)}$

 $KM60 = K \text{ size } 60 \mu M \text{ media (reusable metal)}$

 $KM150 = K \text{ size } 150 \mu \text{ M media (reusable metal)}$

 $KM260 = K \text{ size } 260 \mu \text{ M media (reusable metal)}$ BOX 6 BOX 7

Magnet Option Porting Omit = None P = 11/2 " NPTF M = MagnetS = SAE-24F = 11/2" SAE-4-bolt flange Code 61

B = ISO 228 G-11/2"

Bypass Setting

media)

media)

DZ media)

DZ media)

 $3 = 3 \mu$

 $5 = 5 \mu$

 $10 = 10 \mu$

25 = 25 μ (L, Δ, Ξ media)

 $60 = 60 \mu \text{ (M media)}$

(Z, ZW and DZ

(E, AS, Z, ZW and

(AS, Z, ZW and DZ

(E, AS, Z, ZW, M and

(E, Z, ZW, M and DZ

Omit = 30 psi cracking 50 = 50 psi cracking (req. for HF4)

BOX 8

BOX 9

NOTES:

- Box 2. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. Number of elements must equal 1 when using KK or 27K elements. ZW media not available in 27K.
- Box 3. Replacement element part numbers are identical to contents of Boxes 2, 3, 4, and 5.
- Box 5. For options H, W, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 7. For option F, bolt thread depth .63" (16 mm). B porting option supplied with metric mounting holes.
- Box 10. Option L not available with MS Dirt Alarm

Dirt Alarm® Options Omit = None D = Pointer

D5 = Visual pop-up Visual with

D8 = Visual w/ thermal lockout Thermal Lockout MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable

MS5LC = Low current MS5

MS10 = Electrical w/ DIN connector (male end only)

MS10LC = Low current MS10**Flectrical**

MS11 = Electrical w/ 12 ft. 4-conductor wire

MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)

MS12LC = Low current MS12

MS16 = Electrical w/ weather-packed sealed connector

MS16LC = Low current MS16

MS17LC = Electrical w/ 4 pin Brad Harrison male connector

MS5T = MS5 (see above) w/ thermal lockout

MS5LCT = Low current MS5T

MS10T = MS10 (see above) w/ thermal lockout

Electrical MS10LCT = Low current MS10T with Thermal MS12T = MS12 (see above) w/ thermal lockout

MS12LCT = Low current MS12T

MS16T = MS16 (see above) w/ thermal lockout

MS16LCT = Low current MS16T

MS17LCT = Low current MS17T

MS = Cam operated switch w/ ½" conduit female connection Electrical

MS13 = Supplied w/ threaded connector & light

MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end) MS13DCT = MS13 (see above), direct current, w/ thermal lockout

Electrical Visual with MS13DCLCT = Low current MS13DCT

Thermal MS14DCT = MS14 (see above), direct current, w/ thermal lockout

Lockout MS14DCLCT = Low current MS14DCT

BOX 10 **Additional Options**

Omit = None

 $L = Two \frac{1}{4}$ " NPTF inlet and outlet test ports

N = No-Element indicator

 $G426 = \frac{3}{4}$ " drain on bottom of housing

 $G440 = \frac{1}{2}$ " drain on bottom of housing

Lockout

Visual

Features and Benefits

■ Threaded bowl allows for easier removal and facilitates element changes

- Available with 18LC and K-size elements
- Available with 1½" and 2" porting
- Offered in pipe, SAE straight thread, ISO 228, and flange porting
- Various Dirt Alarm® options
- Available with NPTF inlet and outlet female test ports
- Available with housing drain plug
- Available with quality-protected GeoSeal® Elements (GKL3)

120 *gpm* 455 L/min 300 psi 20 bar

KF3

KL3

KFT

KTK

Fluid
Compatibility

Filter

Housing **Specifications**

viodel No. of filter in photograph is KL31KZ10F24.	

Flow Rating: Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids for P24, S24, F24 and B24 porting

Up to 120 gpm (455 L/min) for 150 SUS (32 cSt) fluids for P32, S32 and B32 porting

Max. Operating Pressure: 300 psi (20 bar)

Min. Yield Pressure: 1000 psi (70 bar), per NFPA T2.6.1 Rated Fatique Pressure: 300 psi (20 bar), per NFPA T2.6.1-2005

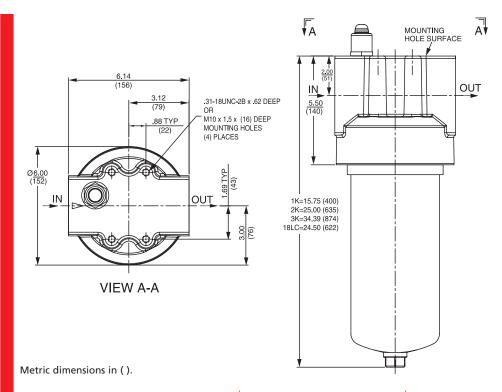
> -20°F to 225°F (-29°C to 107°C) Temp. Range:

Bypass Setting: Cracking: 30 psi (2 bar)

Full Flow: 68 psi (4.7 bar)

Porting Head: Cast Aluminum Element Case:

Weight of KL3-18LC: 20.00 lbs. (9.1 kg) Weight of KL3-1K: 14.75 lbs. (6.7 kg) Weight of KL3-2K: 18.50 lbs. (8.4 kg) Weight of KL3-3K: 22.75 lbs. (10.3 kg) Element Change Clearance: 2.50" (64 mm)


Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® media (synthetic)

All Z-Media® and ASP® media (synthetic) **High Water Content**

10 and 25 μ Z-Media® (synthetic), 10 μ ASP® media (synthetic) **Invert Emulsions**

3, 5, 10 and 25 μ Z-Media[®] (synthetic), 3, 5, and 10 μ ASP[®] media (synthetic) Water Glycols All Z-Media® with H (EPR) seal designation and all ASP® media (synthetic) **Phosphate Esters**

SCHROEDER INDUSTRIES 223

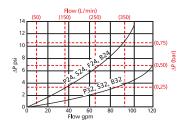
Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 111	
Element	ß _{x} ≥ 75	$\beta_{\boldsymbol{X}} \ge 100$	$\beta_{\boldsymbol{X}} \geq 200$	$\beta_{X}(c) \ge 200$	β _X (c) ≥ 1000
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5
18LCZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LCZ3	<1.0	<1.0	<2.0	<4.0	4.8
18LCZ5	2.5	3.0	4.0	4.8	6.3
18LCZ10	7.4	8.2	10.0	8.0	10.0
18LCZ25	18.0	20.0	22.5	19.0	24.0

	DHC										
Element	(g)										
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61			18LCZ1	224
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128	18LCZ3	230
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126	18LCZ5	238
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114	18LCZ10	216
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158	18LCZ25	186

Element Collapse Rating: 150 psid (10 bar) for standard elements

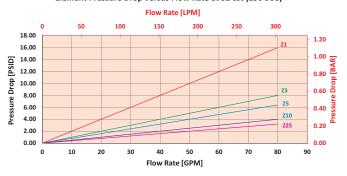
Flow Direction: Outside In

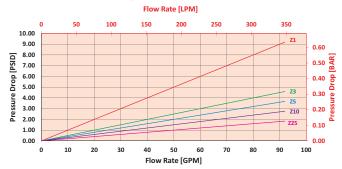

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long 18LC: 4.0" (100 mm) O.D. x 18.5" (470 mm) long

KL3

 $\triangle \mathbf{P}_{\text{housing}}$


KL3 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle P_{element}$

ΚZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2KZ/KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 70 gpm (265.3 L/min) for KL31KZ10P24D5L using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 7 psi (.48 bar) on the graph for the KL3 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 70 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

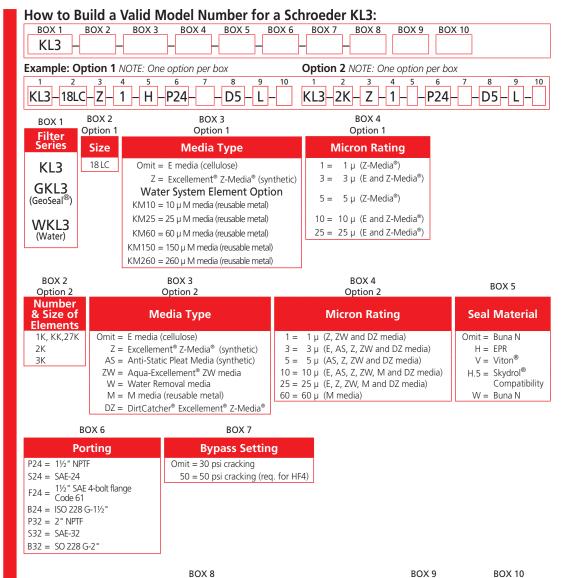
Solution

 $\Delta \mathbf{P}_{\text{housing}} = 7 \text{ psi } [.48 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 7 \text{ psi} + (3 \text{ psi} * 1.1) = 10.7 \text{ psi}$$

OR


 $\Delta \mathbf{P}_{\text{filter}} = .48 \text{ bar} + (.21 \text{ bar} * 1.1) = .71 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f \text{ Plug this variable into the overall}$

pressure drop equation.					
Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
K3	0.25	2K3/ KK3	0.12	18LC3	0.12
K10	0.09	2K10/ KK10	0.05	18L10	0.05
K25	0.02	2K25/ KK25	0.01	18LCZ1	0.10
KAS3	0.10	2KAS3/ KKAS3	0.05	18LCZ3	0.05
KAS5	0.08	2KAS5/ KKAS5	0.04	18LCZ5	0.04
KAS10	0.05	2KAS10/ KKAS10	0.03	18LCZ10	0.03
KZW1	0.43	2KZW1	-	18LCZ25	0.02
KZW3	0.32	2KZW3/ KKZW3	0.16		
KZW5	0.28	2KZW5/ KKZW5	0.14		
KZW10	0.23	2KZW10/ KKZW10	0.12		
KZW25	0.14	2KZW25/ KKZW25	0.07		

Filter Model Number Selection

NOTES:

Box 2. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. Number of elements must equal 1 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4, and 5. ZW media not available in 27K length. Example: 18LCZ3V

Box 5. For options H, W, V, and H.5, all aluminum parts are anodized.H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior.

Viton® is a registered trademark of DuPont Dow Elastomers.
Skydrol® is a registered

Skydrol® is a registered trademark of Solutia Inc.

Box 6. B24 and B32 porting options supplied with metric mounting holes.
18LC elements require 2" ports for up to 120 gpm. K size elements require 1½" ports for up to 100 gpm.

Dirt Alarm® Options Omit = None Visua D5 = Visual pop-up Visual with Therma D8 = Visual w/ thermal lockout Lockout MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire **Flectrical** MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16MS17LC = Electrical w/ 4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5TMS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10TElectrical with MS12T = MS12 (see above) w/ thermal lockout Thermal Lockout MS12LCT = Low current MS12TMS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16TMS17LCT = Low current MS17TMS13 = Supplied w/ threaded connector & light Electrical Visual MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end) MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCTElectrical Visual with

MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT

Test Port Options

Two 1/4"

inlet and

NPTF

outlet female test

ports

Omit = None

Omit = None DR = %"drain on bottom of housing

Thermal Lockout

Type Fluid

Petroleum Based Fluids

High Water Content

Invert Emulsions Water Glycols

Phosphate Esters

Skydrol®

Features and Benefits

- Offered in pipe, SAE straight thread and ISO 228 porting
- Available in 18" element lengths only
- Various Dirt Alarm® options
- Available with NPTF inlet and outlet female test ports
- Available with 2" porting with "K" size element
- Available with housing drain plug

120 gpm 455 L/min 300 psi 20 bar

KF3

KL3

MLF1

KFT

KTK

MRT

Flow Rating:	Up to 120 gpm (455 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	300 psi (20 bar)
Min. Yield Pressure:	1000 psi (70 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	250 psi (17 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 60 psi (4.1 bar)
Porting Head: Element Case:	Cast Aluminum Steel
Available Porting:	2" NPTF, 2½-12 SAE Straight
Weight of LF1-18LC:	17.5 lbs. (7.9 kg)
Element Change Clearance:	2.0" (55 mm)

Appropriate Schroeder Media

10 and 25 μ Z-Media® (synthetic)

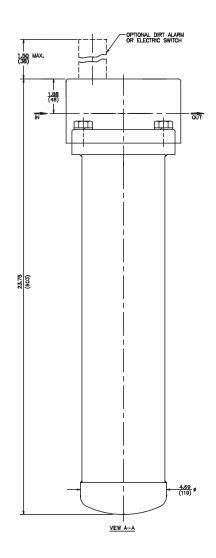
3, 5, 10 and 25 µ Z-Media® (synthetic)

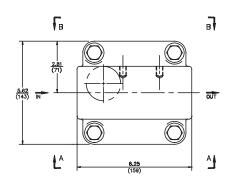
All Z-Media (synthetic)

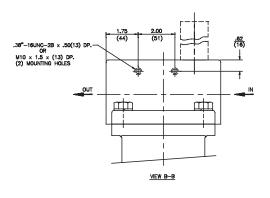
All E media (cellulose) and Z-Media® (synthetic)

All Z-Media® (synthetic) with H (EPR) seal designation

3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)


Fluid Compatibility


Filter


Housing **Specifications**

For Tank-

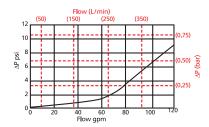
SCHROEDER INDUSTRIES 227

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		io Per ISO 4572/NF			per ISO 16889 ted per ISO 11171
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
18LCZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LCZ3	<1.0	<1.0	<2.0	<4.0	4.8
18LCZ5	2.5	3.0	4.0	4.8	6.3
18LCZ10	7.4	8.2	10.0	8.0	10.0
18LCZ25	18.0	20.0	22.5	19.0	24.0
Element	DHC (gm)				

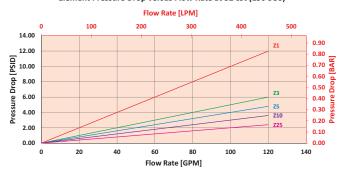
Element	DHC (gm)	
18LCZ1	224	
18LCZ3	230	
18LCZ5	238	
18LCZ10	216	
18LCZ25	186	


Element Collapse Rating: 150 psid (10 bar)

Flow Direction: Outside In

Element Nominal Dimensions: 4.0" (100 mm) O.D. x 18.5" (470 mm) long

$\triangle \boldsymbol{P}_{\text{housing}}$


LF1-2" $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

$\triangle \textbf{P}_{element}$

18LCZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 70 gpm (265.3 L/min) for LF118LCZ3P32D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the LF1 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 70 gpm. In this case, $\Delta P_{\text{element}}$ is 3.5 psi (.24 bar) according to the graph for the 18LCZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle P_{\text{filter}}$, is calculated by adding $\triangle P_{\text{housing}}$ with the true element pressure differential, ($\triangle P_{\text{element}} * V_f$). The $\triangle P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3.5 \text{ psi } [.24 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 2 \text{ psi} + (3.5 \text{ psi} * 1.1) = 5.9 \text{ psi}$$

OR

 $\Delta P_{\text{filter}} = .14 \text{ bar} + (.24 \text{ bar} * 1.1) = .40 \text{ bar}$

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder LF1:

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7	
Example: NOTE: Only box 7 may contain more than one option	
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7	
LF1 - 18 - LC3 P32 - D5 - = LF118LC3P32D5	

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Length of Element (in)	Element Size and Media	Seal Material
LF1	18	LC3 = LC size 3 µ E media (cellulose) LC10 = LC size 10 µ E media (cellulose)	Omit = Buna N H = EPR
WLF1 (Water)		LCZ1 = LC size 1 µ Excellement® Z-Media™ (synthetic)	V = Viton®
		LCZ3 = LC size 3 µ Excellement Z-Media (synthetic) LCZ5 = LC size 5 µ Excellement Z-Media (synthetic) LCZ10 = LC size 10 µ Excellement Z-Media (synthetic) LCZ25 = LC size 25 µ Excellement Z-Media (synthetic)	H.5 = Skydrol® Compatibility

BOX 5	BOX 6	BOX 7
Porting	Dirt Alarm [®] Options	Additional Options
P32 = 2" NPTF	Omit = None	Omit = None
S32 = SAE-32	D = Pointer Visual	L = Two ¼" NPTF inlet and outlet female test ports
B32 = ISO 228 G-2"	D5 = Visual pop-up	G426 = ¾" drain on bottom of housing
	Visual with Thermal D8 = Visual w/ thermal lockout Lockout	G440 = ½" drain on bottom of housing
	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only)	
	MS10LC = Low current MS10	

MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)

MS16 = Electrical w/ weather-packed sealed connector

MS17LC = Electrical w/ 4 pin Brad Harrison male connector

MS5T = MS5 (see above) w/ thermal lockout

MS10T = MS10 (see above) w/ thermal lockout

MS12T = MS12 (see above) w/ thermal lockout

MS16T = MS16 (see above) w/ thermal lockout

Cam operated switch w/ 1/2" conduit

Supplied w/ 5 pin Brad Harrison connector

MS13 = Supplied w/ threaded connector & light

MS13DCT = MS13 (see above), direct current, w/ thermal lockout

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

MS12LC = Low current MS12

MS16LC = Low current MS16

MS5LCT = Low current MS5T

MS10LCT = Low current MS10T

MS12LCT = Low current MS12T

MS16LCT = Low current MS16T

MS17LCT = Low current MS17T

Visual MS13DCLCT = Low current MS13DCT

Lockout MS14DCLCT = Low current MS14DCT

MS = Carri operates : female connection

& light (male end)

NOTES:

Box 2. Replacement element part numbers are a 2, 3, and 4.

Box 4. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior.

Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.

Box 5. B porting option supplied with metric mounting holes.

combination of Boxes Example: 18LCZ3V

230 SCHROEDER INDUSTRIES

Electrical

Electrical

Thermal

Lockout

Electrical

Visual

with

Top-Ported Return Line Filter MLF1

Features and wBenefits

■ Equipped with inlet and outlet manifolds

■ Meets HF4 automotive standard

Offered in pipe and flange porting

Available in 2, 4 or 6 element configurations

Various Dirt Alarm® options

Available with NPTF inlet and outlet female test ports

■ Available with housing drain plugs

G Available with quality-protected GeoSeal® Elements (GMLF1)

200 gpm 760 L/min 300 psi 20 bar

KF3

KL3

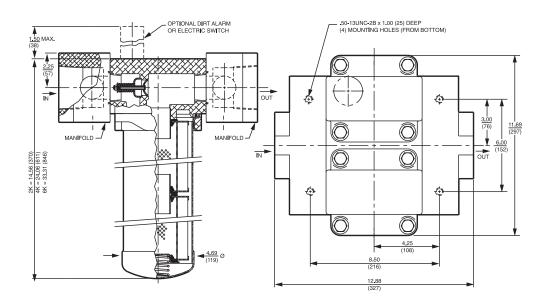
MLF1

KFT

KTK

Flow Rating:	Up to 200 gpm (760 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	300 psi (20 bar)
Min. Yield Pressure:	1000 psi (70 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	250 psi (17 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 25 psi (2 bar) Full Flow: 60 psi (4 bar)
Porting Head: Element Case:	Anodized Cast Aluminum Steel
Weight of MLF1-2K: Weight of MLF1-4K: Weight of MLF1-6K:	50.0 lbs. (23.0 kg)
Element Change Clearance:	2.0" (55 mm)

Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® media (synthetic) **High Water Content** All Z-Media® (synthetic) **Invert Emulsions** 10 and 25 µ Z-Media® (synthetic) Water Glycols 3, 5, 10 and 25 µ Z-Media® (synthetic) All Z-Media® (synthetic) with H (EPR) seal designation and 3 and 10 μ E **Phosphate Esters** media (cellulose) with H (EPR) seal designation and all ASP® media (synthetic) Skydrol®


3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP® media (synthetic).

Fluid Compatibility

Filter Housing **Specifications**

Top-Ported Return Line Filter

Metric dimensions in ().

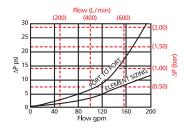
Element Performance Information & Dirt Holding Capacity

		cio Per ISO 4572/NF article counter (APC) calil		per ISO 16889 ted per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5	2.5	3.0	4.0	4.8	6.3
KZ10	7.4	8.2	10.0	8.0	10.0
KZ25	18.0	20.0	22.5	19.0	24.0
KZW3	N/A	N/A	N/A	<4.0	4.8
KZW5	N/A	N/A	N/A	5.1	6.4
KZW10	N/A	N/A	N/A	6.9	8.6
KZW25	N/A	N/A	N/A	15.4	18.5

Element	DHC (gm)						
2KZ1	224	4KZ1	448	6KZ1	672		
2KZ3	230	4KZ3	460	6KZ3	690	KZW3	64
2KZ5	238	4KZ5	476	6KZ5	714	KZW5	63
2KZ10	216	4KZ10	432	6KZ1	648	KZW10	67
2KZ25	186	4KZ25	372	6KZ25	558	KZW25	79

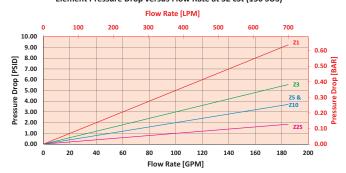
Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In

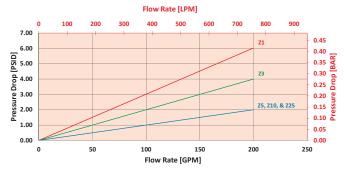

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Top-Ported Return Line Filter MLF


 $\triangle \textbf{P}_{\text{housing}}$

MLF1 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle \textbf{P}_{\text{element}}$

4KZ/2KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

6KZ/2-27KZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$

Exercise:

Determine ΔP_{filter} at 150 gpm (568.5 L/min) for MLF14K10PD using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 150 gpm. In this case, $\Delta P_{\text{housing}}$ is 15 psi (1 bar) on the graph for the MLF1 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 150 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the KKZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 15 \text{ psi } [1 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 15 \text{ psi} + (3 \text{ psi} * 1.1) = 18.3 \text{ psi}$$

 $\Delta P_{\text{filter}} = 1 \text{ bar} + (.21 \text{ bar} * 1.1) = 1.2 \text{ bar}$

Pressure Drop **Information** Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f$ Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
2KZ1	0.10	2K3	0.12	4K3/ KK3	0.06
2KZ3	0.05	2K10	0.05	4K10/ KK10	0.02
2KZ5	0.04	2K25	0.01	4K25/ KK25	0.01
2KZ10	0.03	2KAS3	0.05	4KAS3/ KKAS3	0.03
2KZ25	0.02	2KAS5	0.04	4KAS5/ KKAS5	0.02
KZW3	0.32	2KAS10	0.03	4KAS10/ KKAS10	0.02
KZW5	0.28	2KZW3/ KKZW3	0.16	6KAS3/ 27KAS3	0.02
KZW10	0.23	2KZW5/ KKZW5	0.14	6KAS5/ 27KAS5	0.01
KZW25	0.14			6KAS10/ 27KAS10	0.01

Top-Ported Return Line Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder MLF1:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	
MLF1		-		-					
Example: NOTE: Only box 9 may contain more than one option									
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	
MLF1	- 2K -		10 -			- Р -	D5 -		= MLF12K10PD5

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Number & Size of	Media Type	Micron Rating
MLF1	Elements 2K, KK, 27K 4 K	Omit = E media (cellulose) Z = Excellement® Z-Media® (synthetic) AS = Anti-Static Pleat Media (synthetic)	1 = 1 μ Z, ZW, and DZ media 3 = 3 μ AS,E, Z, ZW, and DZ media 5 = 5 μ AS, Z, ZW, DZ media
GMLF1 (GeoSeal®)	6 K GeoSeal®	ZW = Aqua-Excellement™ ZW media	10 = 10 μ AS, E, M, Z, ZW, & DZ media
	2KG, KKG, 27KG	DZ = DirtCatcher® with Excellement® Z-Media®	25 = 25 μ E, M, Z, ZW and DZ media
	4 KG 6 KG	W = W media (water removal) M = M media (reusable metal mesh)	60 = 60 μ M media 150 = 150 μ M media

BOX 5	BOX 6	BOX 7
Seal Material	Magnet Option	Porting
Omit = Buna N H = EPR	Omit = None M = Magnet inserts	P = 2½" NPTF F = 2½" SAE 4-bolt flange Code 61
V = Viton [®] H.5 = Skydrol [®] Compatibility		

		BOX 8	BOX 9
	D	irt Alarm [®] Options	Additional Options
	Omit =	None	Omit = None
3.6.1	D=	Pointer	L = Two ¼" NPTF inlet and outlet
Visual	D5 =	Visual pop-up	female test ports G426 = ¾" drain on bottom of housing
Visual with Thermal Lockout		Visual w/ thermal lockout	$G440 = \frac{1}{2}$ " drain on bottom of housing
	MS5LC =	Electrical w/ 12 in. 18 gauge 4-conductor cable Low current MS5 Electrical w/ DIN connector (male end only)	
	MS10LC =	Low current MS10	
Electrical	MS11 =	Electrical w/ 12 ft. 4-conductor wire	
Electrical	MS12 =	Electrical w/ 5 pin Brad Harrison connector (male end only)	
	MS12LC =	Low current MS12	
	MS16 =	Electrical w/ weather-packed sealed connector	
	MS16LC =	Low current MS16	
	MS17LC =	Electrical w/ 4 pin Brad Harrison male connector	
	MS5T =	MS5 (see above) w/ thermal lockout	
	MS5LCT =	Low current MS5T	
	MS10T =	MS10 (see above) w/ thermal lockout	
=1	MS10LCT =	Low current MS10T	
Electrical with Thermal Lockout	MS12T =	MS12 (see above) w/ thermal lockout	
THEITIGI EOCKOGE	MS12LCT =	Low current MS12T	
	MS16T =	MS16 (see above) w/ thermal lockout	
	MS16LCT =	Low current MS16T	
		Low current MS17T	
Ele atricel	MS =	Cam operated switch w/ ½" conduit female connection	
Electrical Visual	MS13 =	Supplied w/ threaded connector & light	
Visual	MS14 =	Supplied w/ 5 pin Brad Harrison connector & light (male end)	
		MS13 (see above), direct current, w/ thermal lockout	
		Low current MS13DCT	
Thormal Lockout	A ACA AD CT	N C C A A /	

Thermal Lockout MS14DCT = MS14 (see above), direct current, w/ thermal lockout

MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Double and triple stacking of K-size elements can be replaced by KK and 27K elements, respectively. Number of elements must equal 2 when using KK or 27K elements.
- Box 3. Replacement element part numbers are identical to contents of Boxes 2, 3, 4, and 5. K25 is not available with EPR seals.
- Box 5. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol® is a registered trademark of Solutia Inc.

Model No. of filter in photograph is RLD25DNZ5S24DW.

Element Change Clearance:

Features and Benefits

■ Lightweight duplex filter constructed of aluminum

- High chromium content aluminum alloy is water tolerant – anodization is not required for high water-based fluids (HWBF)
- Filter housings are designed to withstand pressure surges as well as high static pressure loads
- Screw-in bowl allows the filter element to be easily removed for replacement or cleaning
- Standard model supplied with drain plugs
- Standard Viton® seal on filter housing
- Filter contains an integrated equalization valve
- Pressure is equalized between filters by raising the change-over lever prior to switching it to the relevant filter side

100 gpm 380 Ľ/min 350 psi 24 bar

KF3

KL3

MLF1

RLD

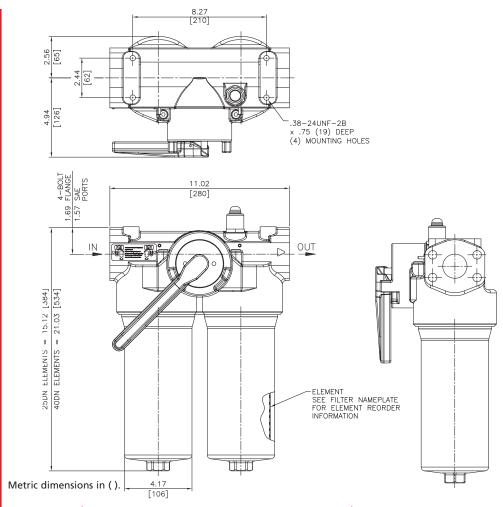
KFT

KTK

MRT

Fluid	
Compatibilit	y

Filter Housing **Specifications**


Mounted

	_
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	350 psi (24 bar)
Min. Yield Pressure:	Contact factory
Rated Fatigue Pressure:	350 psi (24 bar)
Temp. Range:	-22°F to 250°F (-30°C to 121°C)
Bypass Setting:	Standard: 102 psi (7 bar) Optional: 43 psi (3.0 bar)
Porting Head: Element Case:	Aluminum Aluminum
Weight of RLD-25DN: Weight of RLD-40DN:	26 lbs. (11.8 kg) 29 lbs. (13.0 kg)

25DN: 3.5" (89 mm) **40DN:** 3.5" (89 mm)

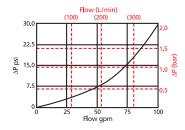
Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All Z-Media® (synthetic) **High Water Content** All Z-Media® (synthetic) **Invert Emulsions** 10 and 25 µ Z-Media® (synthetic) Water Glycols 3, 6, 10 and 25 µ Z-Media[®] (synthetic)

Element Performance Information & Dirt Holding Capacity

		io Per ISO 4572/NF rticle counter (APC) calib		per ISO 16889 ted per ISO 11171	
Element	β _x ≥ 75	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
25/40DNZ3	<1.0	<1.0	<2.0	<4.0	4.8
25/40DNZ6	2.5	3.0	4.0	4.8	6.3
25/40DNZ10	7.4	8.2	10.0	8.0	10.0
25/40DNZ25	18.0	20.0	22.5	19.0	24.0

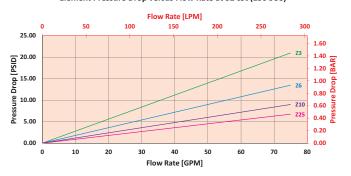
Element	DHC (gm)	Element	DHC (gm)	
25DNZ3	57	40DNZ3	105	
25DNZ6	62	40DNZ6	115	
25DNZ10	52	40DNZ10	104	
25DNZ25	48	40DNZ25	94	

Element Collapse Rating: 290 psid (20 bar)

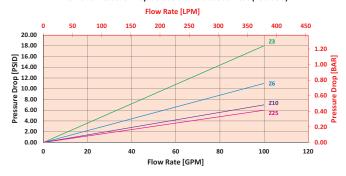

Flow Direction: Outside In

Element Nominal Dimensions: 3.0" (75 mm) O.D. x 14.5" (370 mm) long

RLD


 $\triangle \textbf{P}_{\text{housing}}$

RLD $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle \boldsymbol{P}_{element}$

25DNZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

40DNZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 70 gpm (265.3 L/min) for RLD25DNZ5VF2440VM using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 14 psi (.96 bar) on the graph for the RLD housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 70 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the 25DNZ5V element.

Because the viscosity in this sample is 160 SUS (44 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 14 \text{ psi } [.96 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 $V_f = 160 \text{ SUS (34 cSt)} / 150 \text{ SUS (32 cSt)} = 1.1$

 $\Delta P_{\text{filter}} = 14 \text{ psi} + (8 \text{ psi} * 1.1) = 22.8 \text{ psi}$

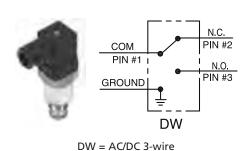
OR

 $\Delta P_{\text{filter}} = .96 \text{ bar} + (.55 \text{ bar} * 1.1) = 1.6 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

DOV 2

Filter Model Number Selection


How to Build a Valid Model Number for a Schroeder RLD: DOV /

RLD - BOX 2 BOX 3 BOX 4 BOX 7	
Example: NOTE: One option per box	
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7	
RLD - 25 - DNZ5 - V - F24 - 40 - VM = RLD25DNZ5VF244	MV0I

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Length of Elements (cm)	Element Size and Media	Element Seal Material
DI D	25	DNZ5 = DN size 5 μ synthetic media	Omit = Buna N
RLD	40	DNZ10 = DN size 10 μ synthetic media	V = Viton®
		DNZ25 = DN size 25 μ synthetic media	
		DNM25 = DN size 25 μ M media (reuseable metal)	
		DNM50 = DN size 50 μ M media (reuseable metal)	
		DNM100 = DN size 100 µ M media (reuseable metal)	
		DNM200 = DN size 200 μ M media (reuseable metal)	

BOX 5 BOX 6 BOX 7 **Dirt Alarm® Options Porting Bypass Setting** $F24 = 1\frac{1}{2}$ " SAE 4-bolt flange Code 61 Omit = 102 psi cracking Omit = None $S24 = SAE-24(1\frac{1}{2})$ 40 = 43 psi cracking Visual VM = Visual pop-up w/manual reset DW = AC/DC 3-wire (NO or NC) Electrical

(NO or NC)

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 40DNZ10

Box 4. Filter housings are supplied with standard Viton seals. Seal designation in Box 4 applies to element only. Viton® is a registered trademark of DuPont Dow Elastomers.

Tank-Mounted Return Line Filter GRTB

Model No. of filter in photograph is GRTB1KBGZ10S.

Max. Operating Pressure: 100 psi (7 bar)

Min. Yield Pressure: 400 psi (28 bar)

Cap & Bowl: Nylon Porting Head: Aluminum Weight of GRTB-1K: 5.2 lbs (2.36 kg)

Element Change Clearance: 9.5" (240 mm)

Type Fluid

Petroleum Based Fluids

Invert Emulsions

Rated Fatigue Pressure: 145 psi (10 bar), Per NFPA T2.6.1-2005 **Temp. Range:** -20°F to 200°F (-29°C to 93°C) Bypass Setting: Cracking: 25 psi (1.7 bar)

Full Flow: 42 psi (2.9 bar)

Appropriate Schroeder Media

All E media (cellulose), Z-Media® and ASP® media (synthetic) 10 and 25 μ Z-Media[®] and 10 μ ASP[®] media (synthetic)

Features and Benefits

- Patented GeoSeal® Elements
- Various Dirt Alarm® options
- Cost optimized for in-tank applications
- Plastic bowl and cap lower cost and minimize weight
- UV resistant cap

Flow Rating: Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids

Same day shipment model available

► Part of Schroeder Industries Energy Savings Initiative

100 gpm 380 L/min 100 psi 7 bar

Filter

Fluid

Compatibility

Housing

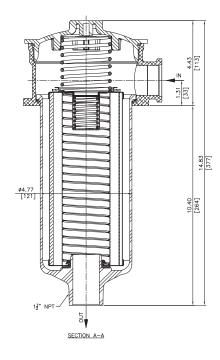
Specifications

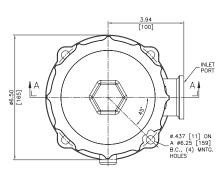
KL3

KF3

MLF1

GRTB


KFT


KTK

SCHROEDER INDUSTRIES 239

GRTB Tank-Mounted Return Line Filter

Metric dimensions in ().

Element Performance **Information & Dirt Holding Capacity**

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				io per ISO 16889 ated per ISO 11171
Element	$\beta_x \geq 75$	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
KBGZ1	<1.0	<1.0	<1.0	<4.0	4.2
KBGZ3	<1.0	<1.0	<2.0	<4.0	4.8
KBGZ5	2.5	3.0	4.0	4.8	6.3
KBGZ10	7.4	8.2	10.0	8.0	10.0
KBGZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	
KBGZ1	112	
KBGZ3	115	
KBGZ5	119	
KBGZ10	108	
KBGZ25	93	

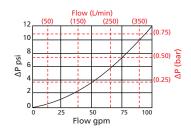
Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

Tank-Mounted Return Line Filter

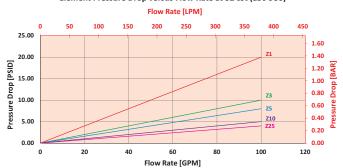
GRTB


Pressure

Information
Based on
Flow Rate
and Viscosity

Drop

 $\triangle \mathbf{P}_{\text{housing}}$


GRTB $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \boldsymbol{P}_{element}$

KBGZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 80 gpm (303.2 L/min) for GRTB1KBGZ10PY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 8 psi (.55 bar) on the graph for the GRTB housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 80 gpm. In this case, $\Delta P_{\text{element}}$ is 4 psi (.27 bar) according to the graph for the KBGZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

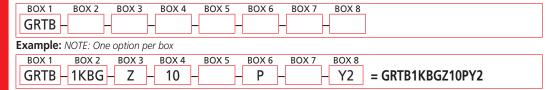
 $\triangle \mathbf{P}_{\text{housing}} = 8 \text{ psi } [.55 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 4 \text{ psi } [.27 \text{ bar}]$

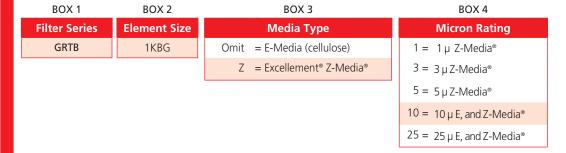
 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 8 \text{ psi} + (4 \text{ psi} * 1.1) = 12.4 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .55 \text{ bar} + (.27 \text{ bar} * 1.1) = .85 \text{ bar}$




GRTB Tank-Mounted Return Line Filter

Filter Model Number Selection

Highlighted product eligible for **QuickDelivery**

How to Build a Valid Model Number for a Schroeder GRTB:

BOX 5	BOX 6	BOX 7
Seals	Port	Outlet Porting Options
Omit = Buna N	P = 1.25" NPT	Omit = 1 ^{1/2} " NPT male
	S = SAE-20	C = Check valve
	B = ISO 228 G-1.25"	D = Diffuser
		CD = Check valve & diffuser
		T = 13" Tube extension

BOX 8				
Indicator				
Omit =	None			
Y2 =	Back-mounted tricolor gauge			
ES =	Electric switch			
ES1 =	Heavy-duty electric switch with conduit connections			

Features and Benefits

- Low pressure tank-mounted filter
- Compact size minimizes space requirements
- Minimizer is cost-effective alternative to spin-on filters
- Special filter element design provides aftermarket benefits

15 gpm <u>55 L/min</u> 100 psi 7 *bar*

TF1

KF3

KL3

MLF1

MTA

KFT

KTK

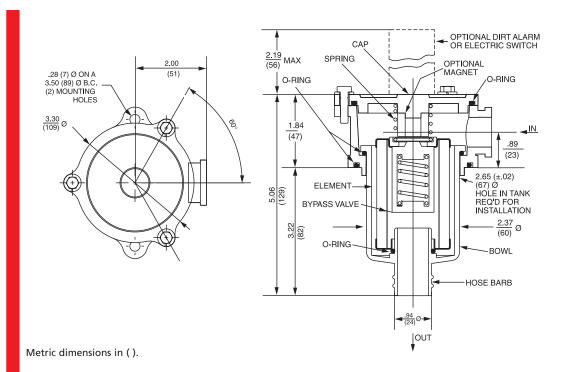
LTK

MRT

Fluid Compatibility

Filter Housing **Specifications**

Mounted


Model No. of filter in photograph is MTA3TAZ10P8.

Up to 15 gpm (55 L/min) for 150 SUS (32 cSt) fluids
100 psi (7 bar)
269 psi (18 bar), per NFPA T2.6.1
Contact factory
-20°F to 225°F (-29°C to 107°C)
Cracking: 25 psi (2 bar) Full Flow: 48 psi (3.3 bar)
Die Cast Aluminum Glass Filled Nylon
1.0 lbs. (0.5 kg)
3.0" (76 mm)

Appropriate Schroeder Media Type Fluid

Petroleum Based Fluids All E media (cellulose) and Z-Media® (synthetic)

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				o per ISO 16889 ated per ISO 11171
Element	β _x ≥ 75	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_{x}(c) \geq 1000$
3TAZ3	<1.0	<1.0	<2.0	<4.0	4.8
3TAZ5	2.5	3.0	4.0	4.8	6.3
3TAZ10	7.4	8.2	10.0	8.0	10.0
3TAZ25	18.0	20.0	22.5	19.0	24.0

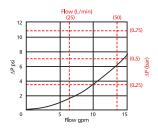
Element	DHC (gm)	
3TAZ3	4	
3TAZ5	6	
3TAZ10	4	
3TAZ25	4	

Element Collapse Rating: 150 psid (10 bar)

Flow Direction: Outside In

Element Nominal Dimensions: 2.0" (51 mm) O.D. x 3.0" (76 mm) long

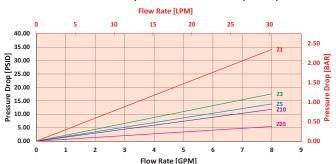
MTA


Pressure

Information
Based on
Flow Rate
and Viscosity

Drop

 $\triangle \textbf{P}_{\text{housing}}$


MTA $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \boldsymbol{P}_{element}$

3TAZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 10 gpm (37.9 L/min) for MTA3TAZ25P8Y5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 10 gpm. In this case, $\Delta P_{\text{housing}}$ is 4 psi (.27 bar) on the graph for the MTA housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 10 gpm. In this case, $\Delta P_{\text{element}}$ is 7 psi (.48 bar) according to the graph for the 3TAZ25 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 4 \text{ psi } [.27 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

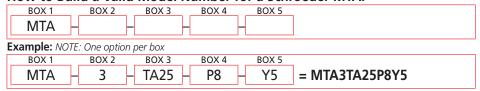
 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta \mathbf{P}_{\text{filter}}$ = 4 psi + (7 psi * 1.1) = 11.7 psi

<u>OR</u>

 $\Delta P_{\text{filter}} = .27 \text{ bar} + (.48 \text{ bar} * 1.1) = .80 \text{ bar}$

Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_{f}. \text{ Plug this variable into the overall}$


pressure drop equation.

Ele.	∆P
3TA10	1.40
3TA25	0.33

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder MTA:

BOX 1	BOX 2	BOX 3
Filter Series	Element Length (in)	Element Size and Media
MTA	3	TA10 = TA size 10 μ E media (cellulose)
IVITA		TA25 = TA size 25 μ E media (cellulose)
		TAZ1 = TA size 1 μ Excellement® Z-Media® (synthetic)
		TAZ3 = TA size 3 µ Excellement® Z-Media® (synthetic)
		TAZ5 = TA size 5 μ Excellement® Z-Media® (synthetic)
		TAZ10 = TA size 10 µ Excellement® Z-Media® (synthetic)
		TAZ25 = TA size 25 μ Excellement® Z-Media® (synthetic)

Porting Options

P8 = ½" NPTF
S8 = SAE-8

Visual

BOX 5

Dirt Alarm® Options

Omit = None

Y2C = Bottom-mounted gauge in cap
Y5 = Back-mounted gauge in cap

ESC = Electric pressure switch (2 terminals)

Electrical

Features and Benefits

- Low pressure tank-mounted filter
- Compact size minimizes space requirements
- Minimizer is cost-effective alternative to spin-on filters
- Special filter element design provides aftermarket benefits

35 gpm <u>135 L/min</u> 100 psi 7 *bar*

KL3

KF3

TF1

MLF1

MTA

MTB

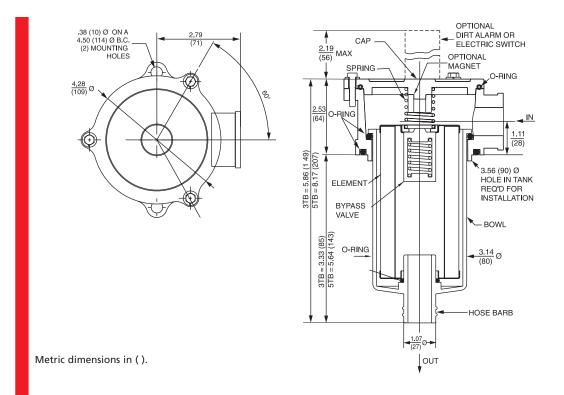
KFT

KTK

LTK

MRT

Fluid Compatibility


Filter Housing **Specifications**

Model No. of filter in photograph is MTB5TBZ5P16.

Flow Rating: Up to 25 gpm (95 L/min) for 150 SUS (32 cSt) fluids–MTB-3 Up to 35 gpm (135 L/min) for 150 SUS (32 cSt) fluids–MTB-5 Max. Operating Pressure: 100 psi (7 bar) Min. Yield Pressure: 229 psi (15 bar), per NFPA T2.6.1 Rated Fatigue Pressure: Contact factory Temp. Range: -20°F to 225°F (-29°C to 107°C) Bypass Setting: Cracking: 25 psi (2 bar) Full Flow: 51 psi (3.5 bar) Porting Head & Cap: Glass Filled Nylon
Min. Yield Pressure: 229 psi (15 bar), per NFPA T2.6.1 Rated Fatigue Pressure: Contact factory Temp. Range: -20°F to 225°F (-29°C to 107°C) Bypass Setting: Cracking: 25 psi (2 bar) Full Flow: 51 psi (3.5 bar) Porting Head & Cap: Die Cast Aluminum
Rated Fatigue Pressure: Contact factory Temp. Range: -20°F to 225°F (-29°C to 107°C) Bypass Setting: Cracking: 25 psi (2 bar) Full Flow: 51 psi (3.5 bar) Porting Head & Cap: Die Cast Aluminum
Temp. Range: -20°F to 225°F (-29°C to 107°C) Bypass Setting: Cracking: 25 psi (2 bar) Full Flow: 51 psi (3.5 bar) Porting Head & Cap: Die Cast Aluminum
Bypass Setting: Cracking: 25 psi (2 bar) Full Flow: 51 psi (3.5 bar) Porting Head & Cap: Die Cast Aluminum
Full Flow: 51 psi (3.5 bar) Porting Head & Cap: Die Cast Aluminum
5 · · · · · · · · · · · · · · · · · · ·
Weight of MTB-3: 1.8 lbs. (0.8 kg) Weight of MTB-5: 2.1 lbs. (1.0 kg)
Element Change Clearance: 3.0" (76 mm) MTB-3 5.0" (127 mm) MTB-5

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E media (cellulose) and Z-Media® (synthetic)

Element Performance Information & Dirt Holding Capacity

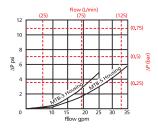
		tio Per ISO 4572/N article counter (APC) cali		per ISO 16889 ated per ISO 11171	
Element	ement $\beta_x \ge 75$ $\beta_x \ge 100$		$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
3TBZ3	<1.0	<1.0	<2.0	<4.0	4.8
3TBZ5	2.5 3.0 7.4 8.2			4.8	6.3
3TBZ10				8.0	10.0
3TBZ25	18.0	20.0	22.5	19.0	24.0
5TBZ3	<1.0	<1.0	<2.0	4.7	5.8
5TBZ5	2.5	3.0	4.0	5.6	7.2
5TBZ10	3Z10 7.4 8.2		10.0	8.0	9.8
5TBZ25	BZ25 18.0 20.0		22.5	19.0	24.0

Element	DHC (gm)	
3TBZ3	11	
3TBZ5	12	
3TBZ10	11	
3TBZ25	11	
5TBZ3	18	
5TBZ5	21	
5TBZ10	17	
5TBZ25	18	

Element Collapse Rating: 150 psid (10 bar)

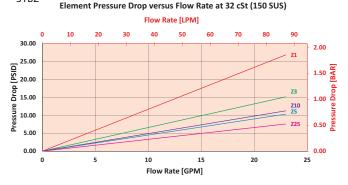
Flow Direction: Outside In

3TB: 3.0" (76 mm) O.D. x 3.0" (76 mm) long 5TB: 3.0" (76 mm) O.D. x 5.0" (127 mm) long

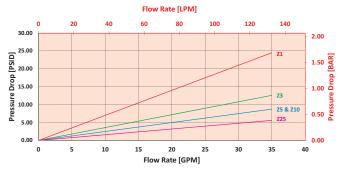

248 SCHROEDER INDUSTRIES

Element Nominal Dimensions:

MTB


 $\triangle \textbf{P}_{\text{housing}}$

MTB $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle P_{element}$

3TBZ Floment Pressure Dron versus Flow

5TBZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 10 gpm (37.9 L/min) for MTB3TBZ25P12Y5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{housing}$ at 10 gpm. In this case, $\Delta P_{housing}$ is 1 psi (.07 bar) on the graph for the MTB housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 10 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the 3TBZ25 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 1 \text{ psi } [.07 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\triangle \mathbf{P}_{\text{filter}} = 1 \text{ psi} + (3 \text{ psi} * 1.1) = 4.3 \text{ psi}$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .07 \text{ bar} + (.21 \text{ bar} * 1.1) = .30 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f \text{ Plug this variable into the overall pressure drop equation.}$

Ele.	$\triangle \mathbf{P}$	Ele.	∆P
3TB10	1.40	5TB10	0.40
3TB25	0.10	5TB25	0.08

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder MTB:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	
MTB	- -				
Example: NOTE: One option per box					
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	
MTB	- 3 -	- TB25 –	P12 -	Y5	= MTB3TB25P12Y5

BOX 1	BOX 2	BOX 3			
Filter Series	Element Length (in)	Element Size and Media			
MTD	3	TB10 = T size 10 μ E media (cellulose)			
MTB	5	TB25 = T size 25 μ E media (cellulose)			
		TBZ3 = T size 3 μ Excellement® Z-Media® (synthetic)			
		TBZ5 = T size 5 μ Excellement® Z-Media® (synthetic)			
		TBZ10 = T size 10 μ Excellement® Z-Media® (synthetic)			
		TBZ25 = T size 25 μ Excellement® Z-Media® (synthetic)			

BOX 4		BOX 5				
	Porting Options		Dirt Alarm® Options			
	P12 = 3/4" NPTF		Omit = None			
	P16 = 1" NPTF	Visual	Y2C = Bottom-mounted gauge in cap			
	S12 = SAE-12	VISUAI	Y5 = Back-mounted gauge in cap			
	S16 = SAE-16	Electrical	ESC = Electric pressure switch (2 terminals)			
	B12 = ISO 228 G-¾"					
	B16 = ISO 228 G-1"					

Flow Rating:

Temp. Range: Bypass Setting:

Cap & Bowl:

Porting Head:

Weight of ZT-8Z:

Element Change Clearance:

100 psi (7 bar)

Nylon

Aluminum

3.3 lbs. (1.49 kg)

10.0" (254 mm)

300 psi (21 bar), per NFPA T2.6.1

Cracking: 25 psi (1.7 bar) Full Flow: 39 psi (2.7 bar)

90 psi (6 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C)

Max. Operating Pressure:

Rated Fatigue Pressure:

Min. Yield Pressure:

Features and Benefits

■ Low pressure tank-mounted filter

- Available with dual inlet porting
- Offered in pipe, SAE straight thread and ISO 228 porting
- Various Dirt Alarm® options
- Optional PAB1 breather
- Optional dipstick
- Available with quality-protected GeoSeal® Elements (GZT)
- Same day shipment model available

Part of Schroeder Industries Energy Savings Initiative

40 gpm 150 L/min 100 psi 7 bar

KF3

KL3

MLF1

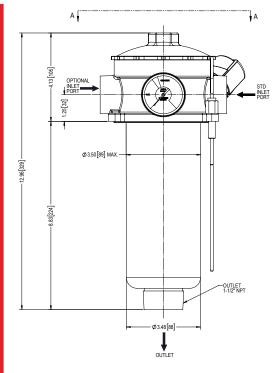
ZT

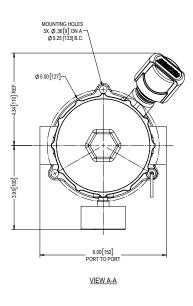
KFT

KTK

N.			
1.4	/ 4		

Type Fluid	Appropriate Schroeder Media
Petroleum Based Fluids	All E media (cellulose) and Z-Media® (synthetic)
High Water Content	All Z-Media (synthetic)
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic)
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic)
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation


Up to 40 gpm (150 L/min) for 150 SUS (32 cSt) fluids


Fluid Compatibility

Filter

Housing

Specifications

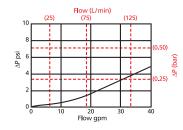
Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		tio Per ISO 4572/N article counter (APC) cal	Filtration Ratio wrt ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$	
8Z3	6.8	7.5	10.0	N/A	N/A
8Z10	15.5	16.2	18.0	N/A	N/A
8ZZ1	<1.0	<1.0	<1.0	<4.0	4.2
8ZZ3	<1.0	<1.0	<2.0	<4.0	4.8
8ZZ5	2.5	3.0	4.0	4.8	6.3
8ZZ10	7.4	8.2	10.0	8.0	10.0
8ZZ25	18.0	20.0	22.5	19.0	24.0

DHC (gm)
39
32
51
52
59
55
77

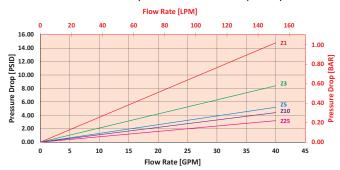
Element Collapse Rating: 150 psid (10 bar)


Flow Direction: Outside In

Element Nominal Dimensions: 3.2" (81 mm) O.D. x 9.25" (235 mm) long

ZT

 $\triangle \mathbf{P}_{\text{housing}}$


ZT $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \textbf{P}_{element}$

8ZZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 30 gpm (119.7 L/min) for ZT8ZZ10SY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 30 gpm. In this case, $\Delta P_{\text{housing}}$ is 3.5 psi (.24 bar) on the graph for the ZT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 30 gpm. In this case, $\Delta P_{\text{element}}$ is 3.5 psi (.24 bar) according to the graph for the 8ZZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3.5 \text{ psi } [.24 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3.5 \text{ psi } [.24 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta P_{\text{filter}} = 3.5 \text{ psi} + (3.5 \text{ psi} * 1.1) = 7.4 \text{ psi}$

<u>OR</u>

 $\Delta \mathbf{P}_{\text{filter}} = .24 \text{ bar} + (.24 \text{ bar} * 1.1) = .50 \text{ bar}$

Drop Information Based on Flow Rate and Viscosity

Pressure

Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f$ Plug this variable into the overall pressure drop equation.

	•
Ele.	$\triangle \mathbf{P}$
8Z3	0.25
8Z10	0.09
8Z25	0.02

Filter Model Number Selection

Highlighted product eligible for wick Delivery

How to Build a Valid Model Number for a Schroeder ZT:

BOX 4

Seal Material

Omit = Buna N

H = EPR

BOX 1 BOX 2 BOX 3 Element Length (in) **Filter Element Size and Media** Series ZT $Z3 = Z \text{ size } 3 \mu \text{ E media (cellulose)}$ 8 Z10 = Z size 10 μ E media (cellulose) **GZT** (GeoSeal®) $Z25 = Z \text{ size } 25 \mu \text{ E media (cellulose)}$ $ZZ1 = Z \text{ size } 1 \mu \text{ Excellement}^{\textcircled{R}} Z\text{-Media}^{\textcircled{R}} \text{ (synthetic)}$ ZZ3 = Z size 3 μ Excellement[®] Z-Media[®] (synthetic) $ZZ5 = Z \text{ size } 5 \mu \text{ Excellement}^{\textcircled{R}} \text{ Z-Media}^{\textcircled{R}} \text{ (synthetic)}$ $ZZ10 = Z \text{ size } 10 \text{ } \mu \text{ Excellement}^{\textcircled{R}} \text{ Z-Media}^{\textcircled{R}} \text{ (synthetic)}$ $ZZ25 = Z \text{ size } 25 \mu \text{ Excellement}^{\textcircled{R}} \text{ Z-Media}^{\textcircled{R}} \text{ (synthetic)}$ GeoSeal® Element Options GZ3 = Z size 3 μ E media (cellulose) GZ10 = Z size 10 μ E media (cellulose) GZ25 = Z size 25 μ E media (cellulose) GTZZ1 = Z size 1 μ Excellement[®] Z-Media[®] (synthetic) GTZZ3 = Z size 3 μ Excellement[®] Z-Media[®] (synthetic) GTZZ5 = Z size 5 μ Excellement[®] Z-Media[®] (synthetic) GTZZ10 = Z size 10 μ Excellement[®] Z-Media[®] (synthetic) GTZZ25 = Z size 25 μ Excellement[®] Z-Media[®] (synthetic)

BOX 5 BOX 6

Inlet Porting	Dirt Alarm® Options			
P = 1" NPTF		Omit = None		
PP = Dual 1" NPTF		Y2 = Back-mounted tri-color gauge		
S = SAE-16	Visual	Y2C = Bottom-mounted gauge in cap		
SS = Dual SAE-16		Y5 = Back-mounted gauge in cap		
B = ISO 228 G-1"		ES = Electric switch		
BB = Dual ISO 228 G-1"	Electrical	ES1 = Heavy-duty electric switch with conduit connection		

BOX 7 BOX 8

DOX 7	BOXO		
Outlet Porting Options	Options		
Omit = $1^{1/2}$ " NPT male	Omit = None		
D = Diffuser	G3039 = 1.5" NPT Outlet Removed		
T = 13" Tube extension	A = Dipstick		
	B = Breather		
	AB = Dipstick & Breather		
	D = Diffuser		
	M = Mounting Gasket (Buna N)		

Type Fluid

Petroleum Based Fluids

Features and Benefits

- Low pressure tank-mounted filter
- Meets HF4 automotive standard
- Multiple inlet/outlet porting options
- Top, side or bottom mounting
- Optional check valve prevents reservoir siphoning
- Can also be used in return line application (contact factory)
- Double stacking of K-size element can be replaced by single KK element
- Allows consolidation of inventoried replacement elements by using K-size elements
- Also available with DirtCatcher® elements (KD and KKD)

100 *gpm* <u>380 L/min</u> 100 psi 7 bar

KL3

KF3

. . . .

VILF1

DID

MTB

71

KFT

LDT

DET

ОТ

KTK

-1 K

Specifications						

Filter

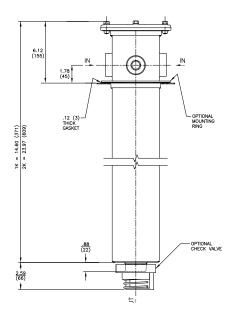
Housing

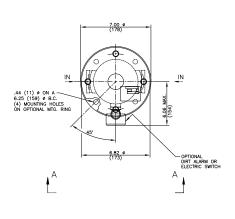
Flow Rating: Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids Max. Operating Pressure: 100 psi (7 bar) Min. Yield Pressure: 400 psi (28 bar), per NFPA T2.6.1 Rated Fatigue Pressure: Contact Factory -20°F to 225°F (-29°C to 107°C) Temp. Range: Bypass Setting: Cracking: 25 psi (1.7 bar) Full Flow: 48 psi (3.3 bar) Porting Head: Porting Cap: Die Cast Aluminum (standard); Steel (optional) Element Case: Weight of KFT-1K: 10.0 lbs. (4.5 kg) Weight of KFT-2K: 13.6 lbs. (6.2 kg) Element Change Clearance: 8.0" (205 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K

Appropriate Schroeder Media

All E media (cellulose), Z-Media® and ASP® media (synthetic)

All Z Media and ASP® media (synthetic)


ccessories For Tank-Mounted Filters


PAF.

MAF

	· · · · · · · · · · · · · · · · · · ·
High Water Content	All Z-Media and ASP® media (synthetic)
Invert Emulsions	10 and 25 μ Z-Media® (synthetic), 10 μ ASP® media (synthetic)
Water Glycols	3, 5, 10 and 25 μ Z-Media $^{\!\circ}$ (synthetic), 3, 5 and 10 μ ASP $^{\!\circ}$ media (synthetic)
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation, ASP® media (synthetic) and 3 and 10 μ E media (cellulose) with H (EPR) seal designation
Skydrol®	3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation, ASP® media (synthetic) (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

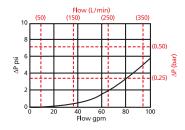
Metric dimensions in ().

Element Performance **Information & Dirt Holding Capacity**

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$	
KZ1/KKZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/KAS3/KKAS3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/KAS5/KKAS5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/KAS10/KKAS10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224	KDZ1	89	KKDZ1	188
KZ3/KAS3	115	KKZ3/KKAS3	230	KDZ3	71	KKDZ3	150
KZ5/KAS5	119	KKZ5/KKAS5	238	KDZ5	100	KKDZ5	210
KZ10/KAS10	108	KKZ10/KKAS10	216	KDZ10	80	KKDZ10	168
KZ25	93	KKZ25	186	KDZ25	81	KKDZ25	171

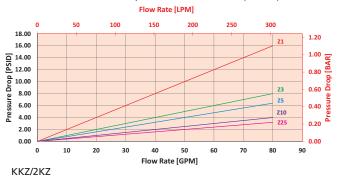
Element Collapse Rating: 150 psid (10 bar) for standard elements

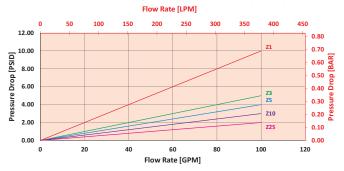

Flow Direction: Outside In

K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long **Element Nominal Dimensions:**

KFT

 $\triangle \textbf{P}_{\text{housing}}$


KFT $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle \textbf{P}_{\text{element}}$

ΚZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 80 gpm (303.2 L/min) for KFT1KZ10S24S24NY2G820 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 3.5 psi (.24 bar) on the graph for the KFT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 80 gpm. In this case, $\Delta P_{\text{element}}$ is 4 psi (.27 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 200 SUS (24 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\Delta \mathbf{P}_{\text{housing}} = 3.5 \text{ psi } [.24 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 4 \text{ psi } [.27 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 3.5 \text{ psi} + (4 \text{ psi} * 1.1) = 7.9 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .24 \text{ bar} + (.27 \text{ bar} * 1.1) = .54 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta \textbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \textbf{P}_f \text{ Plug this variable into the overall}$

pressu	re arc				
Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KDZ1	0.24	2KDZ1	0.12	3K10	0.03
KDZ3	0.12	2KDZ3	0.06	3K25	0.01
KDZ5	0.10	2KDZ5	0.05	3KAS3/ 27KAS3	0.03
KDZ10	0.06	2KDZ10	0.03	3KAS5/ 27KAS5	0.02
KDZ25	0.04	2KDZ25	0.02	3KAS10/ 27KAS10	0.02

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder KFT:

KFT	BOX 1 BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10
	KFT –	_				_	_	_	_

Example: NOTE: One option per box

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10	
KFT -	- 1K -	- Z -	- 10 -		- S24 S24 N -			Y2	- G820 =	KFT1KZ10S24S
										24NY2G820

BOX 1

Filter Series KFT

BOX 2 **Element Size** and Length

1 K, KK 2 K

BOX 3

Media Type **Element Part Number**

 $1 = 1 \mu Z$, ZW, and DZ media Omit = E media (cellulose)

Z = Excellement® Z-Media® (synthetic) $3 = 3 \mu$ AS,E, Z, ZW, and DZ media

 $5 = 5 \mu$ AS, Z, ZW, and DZ media

10 = 10 μ AS, E, M, Z, ZW, and DZ media

BOX 4

 $25 = 25 \mu E$, M, Z, ZW, and DZ media

BOX 5

Omit = Buna N

BOX 6 Specification of all 4 ports is required

DZ = DirtCatcher® with Excellement® Z-Media®

Seal Material

H = FPRV = Viton® $H.5 = Skydrol^{\otimes}$ Compatibility

Inlet Porting

AS = Anti-Static Pleat Media (synthetic)

 $ZW = Agua-Excellement^{TM} ZW media$

Port 1 (Standard)	Port 2 (Optional)	Port 3 (Optional)	Port 4 (Optional)
N = None	N = None	N = None	N = None
			$P2 = \frac{1}{8}$ " NPTF
		P8 = ½" NPTF	P8 = ½" NPTF
P12 = ¾" NPTF			
P16 = 1" NPTF			
P20 = 1¼" NPTF			
P24 = 1½" NPTF			
P32 = 2" NPTF			
S8 = SAE-8	S8 = SAE-8	S8 = SAE-8	S8 = SAE-8
S12 = SAE-12	S12 = SAE-12	S12 = SAE-12	S12 = SAE-12
S16 = SAE-16	S16 = SAE-16	S16 = SAE-16	S16 = SAE-16

S20 = SAE-20

S24 = SAE-24

NOTES:

- Box 2. Number of elements must equal 1 when using KK elements.
- Box 3. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. K specifies one 9' element; KK specifies one 18" element. Example: KKZ10
- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol® is a registered trademark of Solutia Inc. Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 7. See also "Accessories for Tank-Mounted Filters, page 307.
- Box 9. YC2 and Y5 are not available with the G820.

BOX 7 **Outlet Porting Options**

Omit = 1½" NPT male

C = Check valve

D = Diffuser

CD = Check valve & diffuser

T = 13" Tube extension

A = Non-threaded outlet

BOX 8 **Optional** Mounting Flange

S20 = SAE-20

S24 = SAE-24

Omit = None

S20 = SAE-20

S24 = SAE-24

B = Flange with 4holes

BW = Flange with no

BOX 9 **Dirt Alarm® Options**

S20 = SAE-20

S24 = SAE-24

Omit = None Y2 = Back-mounted tri-color gauge (located in Port 4)

Visual Y2C = Bottom-mounted tri-color gauge in cap

Y5 = Back-mounted gauge in cap

ES = Electric switch (located in port 4)

Electrical ES1 = Heavy-duty electric switch with conduit connector (located in port 4)

BOX 10

Additional Options

Omit = None

G2293 = Cork gasket

G820 = Steel cap

Flow Rating:

Temp. Range:

Bypass Setting:

Element Case:

Weight of RT-1K:

Weight of RT-2K:

100 psi (7 bar)

400 psi (28 bar), per NFPA T2.6.1

-20°F to 225°F (-29°C to 107°C)

Cracking: 25 psi (1.7 bar) Full Flow: 48 psi (3.3 bar)

Die Cast Aluminum

11.4 lbs. (5.2 kg)

14.5 lbs. (6.6 kg)

and all ASP® media (synthetic)

Steel

90 psi (6 bar), per NFPA T2.6.1-2005

Max. Operating Pressure:

Rated Fatigue Pressure:

Min. Yield Pressure:

Porting Head & Cap:

Element Change Clearance:

Features and Benefits

- Low pressure tank-mounted filter with up to 3 inlet ports
- Meets HF4 automotive standard
- Top, side or bottom mounting
- Optional check valve prevents reservoir siphoning
- RTW model allows filter to be welded to tank, instead of being bolted
- Double and triple stacking of K-size element can be replaced by single KK or 27K-size element
- Also available with new DirtCatcher® elements (KDZ and KKDZ)
- Various Dirt Alarm® options
- Allows consolidation of inventoried replacement elements by using K-size elements
- 6 Available with quality-protected GeoSeal® Elements (GRT)
- Same day shipment model available

Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids

8.0" (205 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K

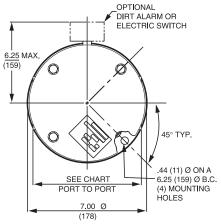
100 gpm 380 L/min 100 psi 7 bar

KF3

KL3

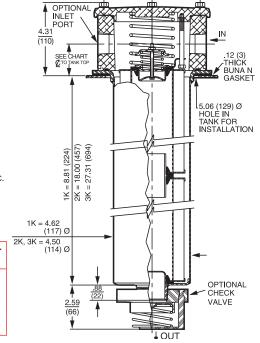
KFT

KTK


	_
Type Fluid	Appropriate Schroeder Media
Petroleum Based Fluids	All E media (cellulose), Z-Media® and ASP® media (synthetic)
High Water Content	All Z-Media® and all ASP® media (synthetic)
Invert Emulsions	10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)
Water Glycols	3, 5, 10 and 25 μ Z-Media® and all ASP® media (synthetic)
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation and 3 and 10 µ E media (cellulose) with H (EPR) seal designation and all ASP® Media (synthetic)
Skydrol®	3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

Fluid Compatibility

Filter


Housing

Specifications

	1½" Ports 4-Bolt Flange Only	2" Ports	All Other Porting
Port to Port	7.12"	7.56" (P, S, B)	6.38"
		7.38" (F)	
દ્ to Casting Base	1.75"	1.81"	1.56"
գ to Tank Top	2.06"	2.12"	1.88"

Optional mounting rings available for tank welding. See page 307, reference part numbers A-LFT-813 and A-LFT-1448.

Metric dimensions in ().

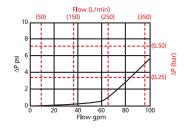
Element Performance Information & Dirt Holding Capacity

		Per ISO 4572/NFF cle counter (APC) calibr		io per ISO 16889 rated per ISO 11171	
Element	β _x ≥ 75	$\beta_x \ge 75$ $\beta_x \ge 100$ $\beta_x \ge 200$		$\beta_x(c) \ge 200$	$\beta_x(c) \geq 1000$
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5

	DHC												
Element	(gm)												
KZ1	112	KKZ1	224	27KZ1	336	KDZ1	89	KKDZ1	188	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KDZ3	71	KKDZ3	150	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KDZ5	100	KKDZ5	210	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KDZ10	80	KKDZ10	168	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KDZ25	81	KKDZ25	171	KZW25	79	KKZW25	158

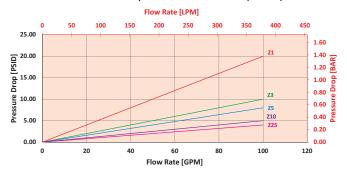
Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In See RTI, page 275 for inside out flow version.

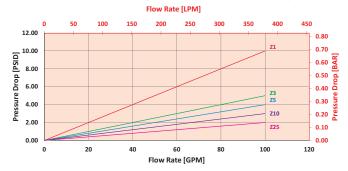

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

RT


 $\triangle \textbf{P}_{\text{housing}}$

RT $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle \textbf{P}_{\text{element}}$

KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2KZ/KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 80 gpm (303.2 L/min) for RT1KZ10S24S24NY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the RT housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 80 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 4 psi (.27 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\triangle \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 4 \text{ psi } [.27 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 3 \text{ psi} + (4 \text{ psi} * 1.1) = 7.4 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .21 \text{ bar} + (.27 \text{ bar} * 1.1) = .51 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Noto

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate } x \Delta P_f$. Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KDZ1	0.24	2KDZ1	0.12	3K10	0.03
KDZ3	0.12	2KDZ3	0.06	3K25	0.01
KDZ5	0.10	2KDZ5	0.05	3KAS3/ 27KAS3	0.03
KDZ10	0.06	2KDZ10	0.03	3KAS5/ 27KAS5	0.02
KDZ25	0.04	2KDZ25	0.02	3KAS10/ 27KAS10	0.02
KZW1	0.43	2KZW1	-		
KZW3	0.32	2KZW3/ KKZW3	0.16		
KZW5	0.28	2KZW5/ KKZW5	0.14		
KZW10	0.23	2KZW10/ KKZW10	0.12		
KZW25	0.14	2KZW25/ KKZW25	0.07		

Filter Model Number Selection

Highlighted product eligible for wickbelivery

How to Build a Valid Model Number for a Schroeder RT:

	RT –		<u>- </u>				
-	Example: NOTE: O	nly box 9 may cor	ntain more than one	option			
	BOX 1 BOX 2	BOX 3 BOX 4	BOX 5 BO	X 6 BOX 7A	BOX 7B BOX 8	BOX 9	
	RT L 1K	_ 7 _ 10		34 N L	_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		= RT1K710S24S24Y2

BOX 2 BOX 3

Element Size & Length Media Ty

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 5

Media Type

Omit = E media (cellulose)

Z = Excellement® Z-Media® (synthetic)
AS = Anti-Static Pleat Media (synthetic)
ZW = Aqua-Excellement™ ZW media

DZ = Dirtcatcher® with Excellement® Z-Media®
W = W media (water removal)

M = M media (reusable metal mesh)

BOX 4

Element Part Number

 $1 = 1 \mu Z$, ZW, and DZ media

 $3\,$ = 3 μ AS,E, Z, ZW, and DZ media

5 = 5 μ AS, Z, ZW, and DZ media 10 = 10 μ AS, E, M, Z, ZW, and DZ media

25 = 25 μ E, M, Z, ZW, and DZ media

 $60 = 60 \,\mu\,M$ media

BOX 6A BOX 6B BOX 7 BOX 8

Seal Material

BOX 5

1K KK, 27K

 $\mathsf{GeoSeal}^{\mathbb{B}}$

1KBG KKBG, 27KBG

2K

3K

2KBG

3KBG

BOX 1

Filter

Series

RT

RTW

GRT

Omit = Buna N

H = EPR

W = Anodized
Aluminum
Parts

H.5 = Skydrol®
compatibility

BOX 6
Specification of all 3 ports is required

	Inlet Porting	
Port A	Port B	Port C
P16 = 1" NPTF	N = None	N = None
P20 = 11/4" NPTF	P16 = 1" NPTF	P2 = 1/8" NPTF
P24 = 1½" NPTF	P20 = 11/4" NPTF	P16 = 1" NPTF
P32 = 2" NPTF	P24 = 1½" NPTF	S16 = SAE-16
S16 = SAE-16	P32 = 2" NPTF	
S20 = SAE-20	S16 = SAE-16	Inlet Porting
S24 = SAE-24	S20 = SAE-20	Location
S32 = SAE-32	S24 = SAE-24	
$F20 = 1\frac{1}{4}$ " SAE 4-bolt flange Code 61	S32 = SAE-32	D 1/8' NPTF Standard
F24 = 1½" SAE 4-bolt flange Code 61	F20 = 11/4" SAE 4-bolt flange Code 61	
F32 = 2" SAE 4-bolt flange Code 61	F24 = 1½" SAE 4-bolt flange Code 61	A [Top View] B

B24 = ISO 228 G-1½"

F32 = 2" SAE 4-bolt flange Code 61

NOTES:

- Box 1. RTW allows filter to be welded to tank instead of bolted.
- Box 2. Number of elements must equal 1 when using KK or 27K elements.
- Box 3. Replacement element part numbers are identical to contents of Boxes 2, 3, 4, and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length.
- Box 5. For options H, W, and H.5 all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol® is a registered trademark of Solutia Inc.
- Box 6. If using Port B, Port A & B must always be the same type and size. Example: (A) P20 (B) P20 (C) P16
- Box 7B. See also "Accessories for Tank-Mounted Filters," page 307.

BOX 7A BOX 7B

Bypass Option

Omit = 25 psi bypass setting RT and RTW models only:

40 = 40 psi bypass setting

Outlet Porting Options

M = Metric SAE 4 bolt flange

Omit = 1½" NPT male

B24 = ISO 228 G-1½"

C = Check valve D = Diffuser

T = 13" Tube ext.

A = Non-thread outlet

BOX 8 BOX 9

		Dirt Alarm [®] Options
		Omit = None
Located	Visual	Y2 = Back-mounted tri-color gauge
@ Port D	Electrical	ES = Electric switch ES3 = Electric switch with DIN connector ES4 = Skydrol Compatible Electric Switch
Located in cap	Visual	Y2C = Bottom-mounted tri-color gauge Y5 = Back-mounted gauge in cap
Located	Visual	Y2R = Back-mounted gauge mounted on opposite side of standard location
@ Port C	Electrical	ESR = Electric switch mounted on opposite side of standard location ES1R = Heaw-duty electric switch mounted on opposite side of standard location

Add. Options

Omit = None
G2293 = Cork gasket
G547 = Two 1/8" gauge ports
G820 = Stamped cap

Features and Benefits

- Tank-mounted "Inside Out" flow filter
- Up to 3 inlet ports available
- Offered in pipe, SAE straight thread and flanged porting
- Various Dirt Alarm® options

120 gpm 455 L/min 100 psi 7 *bar*

KF3

KL3

MLF1

KFT

RTI

Model No. of filter in photograph is RTI3KZ10S24NP16Y2.

Flow Rating:	Up to 120 gpm (455 L/min) for 150 SUS (32 cSt) fluids	Filter
Max. Operating Pressure:	100 psi (7 bar)	Housing
Min. Yield Pressure:	400 psi (28 bar), per NFPA T2.6.1	Specifications
Rated Fatigue Pressure:	Contact factory	
Temp. Range:	-20°F to 225°F (-29°C to 107°C)	

Bypass Setting: Cracking: 25 psi (2 bar) Full Flow: 62 psi (4.3 bar) Porting Head & Cap: Die Cast Aluminum

Element Case: Steel

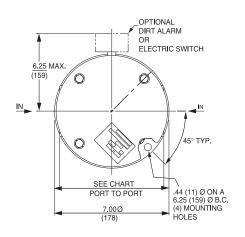
Weight of RTI-KI: 11.4 lbs. (5.2 kg) Weight of RTI-KKI: 14.5 lbs. (6.6 kg)

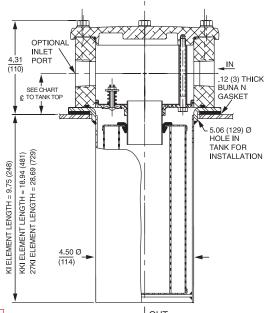
Element Change Clearance: KI Element = 9.0 (229 mm)

KKI Element = 18.0 (457 mm)27KI Element = 27.0 (686 mm)

Filter
Housing
Specifications
•

KTK


MRT


Type Fluid	Appropriate Schroeder Media	Flu
Petroleum Based Fluids	All E media (cellulose), Z-Media® and ASP® media (synthetic)	Co
High Water Content	All Z-Media® and ASP® media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media® and all ASP® media (synthetic)	
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation and all ASP® media (synthetic)	
Skydrol [®]	3, 5, 10 and 25 µ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP® media (synthetic)	

luid ompatibility

Mounted

	1¼", 1½" Standard Ports	1½" Ports 4-Bolt Flange Only
Port to Port	6.38"	7.12"
દ્ to Casting Base	1.56"	1.75"
գ to Tank Top	1.88"	2.06"

Optional mounting rings available for tank welding. See page 307, reference part numbers A-LFT-813 and A-LFT-1448. Metric dimensions in ().

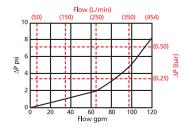
Element Performance Information & Dirt Holding Capacity

		tio Per ISO 4572/N article counter (APC) cal			o per ISO 16889 ated per ISO 11171
Element	β _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
KIZ1	<1.0	<1.0	<1.0	<4.0	4.2
KIZ3	<1.0	<1.0	<2.0	<4.0	4.8
KIZ10	<7.4	<8.2	<10.0	8.0	10.0

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KIZ1	85	KKIZ1	181	27KIZ1	276
KIZ3	88	KKIZ3	185	27KIZ3	283
KIZ10	<82	KKIZ10	174	27KIZ10	266

Element Collapse Rating: 100 psid (7 bar)

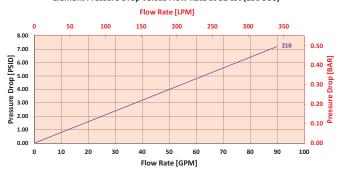
Flow Direction: Inside Out


Element Nominal Dimensions: KI: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KKI: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27KI: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

RT

 $\triangle \mathbf{P}_{\text{housing}}$


RTI $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle P_{element}$

KIZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

KKIZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$$

Exercise:

Determine ΔP_{filter} at 80 gpm (303.2 L/min) for RTIKIZ10S20S20NY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the RTI housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 80 gpm. In this case, $\Delta P_{\text{element}}$ is 6.5 psi (.45 bar) according to the graph for the KIZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 6.5 \text{ psi } [.45 \text{ bar}]$

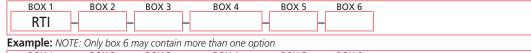
 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 3 \text{ psi} + (6.5 \text{ psi} * 1.1) = 10.2 \text{ psi}$$

<u>OR</u>

 $\Delta \mathbf{P}_{\text{filter}} = .21 \text{ bar} + (.45 \text{ bar} * 1.1) = .71 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity


Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f$ Plug this variable into the overall pressure drop equation.

Ele.	∆P
KIAS10	0.08
KKIAS10	0.05
27KIAS10/ 27KIAS10	0.04

Filter Model Number Selection

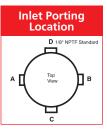
How to Build a Valid Model Number for a Schroeder RTI:

ı	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	
	RTI	- KIZ10 -		_S20 S20 N _	Y2		= RTIKIZ10S20S20NY2

BOX 1 BOX 2

Filter Series	Element Part Number					
DTI	K Length	KK Length	27K Length			
RTI	KIZ1	KKIZ1	27KIZ1	= 1 µ Excellement® Z-Media® and ASP® media (synthetic)		
	KIZ3	KKIZ3	27KIZ3	= 3 µ Excellement® Z-Media® and ASP® media (synthetic)		
	KIZ10	KKIZ10	27KIZ10	= 10 μ Excellement® Z-Media® and ASP® media (synthetic)		

BOX 3


Seal Material

Omit = Buna N

H = EPR

W = Anodized Aluminum Parts

H.5 = Skydrol® Compatibility

BOX 4 Specification of all 3 ports is required

	Inlet Porting	
Port A	Port B	Port C
P16 = 1" NPTF	N = None	N = None
P20 = 11/4" NPTF	P16 = 1" NPTF	P2 = 1/8" NPTF
P24 = 1½" NPTF	P20 = 11/4" NPTF	P16 = 1" NPTF
S16 = SAE-16	P24 = 1½" NPTF	S16 = SAE-16
S20 = SAE-20	S16 = SAE-16	
S24 = SAE-24	S20 = SAE-20	
F20 = 1¼" SAE 4-bolt flange Code 61	S24 = SAE-24	
F24 = 1½" SAE 4-bolt flange Code 61	F20 = 11/4" SAE 4-bolt flange Code 61	
	F24 = 1½" SAE 4-bolt flange Code 61	

NOTES:

Box 2. Replacement element part numbers are identical to contents of Boxes 2 and 3.

Box 3. For options H, W, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol® is a registered trademark of Solutia Inc.

Box 4. If using Port B, Port A & B must always be the same type and size. Example: (A) P20 (B) P20 (C) P16

Box 6. See also "Accessories for Tank-Mounted Filters," page 307. BOX 5

BOX 6

		Βοπο	
		Additional Options	
		Omit = None	Omit = None
1+	Visual	Y2 = Back-mounted tri-color gauge	G547 = Two %" gauge ports
Located @		ES = Electric switch	M = Metric thread for SAE 4-bolt flange mounting
Port D Electrical		ES1 = Heavy-duty electric switch with conduit connector	holes (specify after each port designation)
Located	Visual	Y2C = Bottom-mounted tri-color gauge	
in cap	in cap	Y5 = Back-mounted gauge in cap	
Located	Visual	Y2R = Back-mounted gauge mounted on opposite side of standard location	
@ Port C	Electrical	ESR = Electric switch mounted on opposite side of standard location	
		ES1R = Heavy-duty electric switch with conduit connector	

Model No. of filter in photograph is LRT18LZ10S24NP16Y2.

Features and Benefits

■ Low pressure tank-mounted filter

- Multiple inlet/outlet porting options
- Top, side or bottom mounting
- Optional check valve prevents reservoir siphoning
- Can also be used in return line application (contact factory)
- Visual gauge or electrical switch dirt alarms
- Offered in pipe, SAE straight thread, flanged and ISO 228 porting
- Same day shipment model available
- Also available with DirtCatcher® elements (18LD)
- GeoSeal® Elements (GLRT)

150 *gpm*<u>570 L/min</u>
100 psi
7 bar

TF1

KF3

KL3

MLF1

RLD

GRTR

MTA

IVIID

Z1

KFT

RTI

	_
Flow Rating:	Up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	100 psi (7 bar)
Min. Yield Pressure:	400 psi (28 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	90 psi (6 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 34 psi (2.3 bar)
Porting Head & Cap: Element Case:	Die Cast Aluminum Steel
Weight of LRT-18L:	14.6 lbs. (6.6 kg)
Element Change Clearance:	17.0" (432 mm)

Filter Housing Specifications

ART

LRT

BRT

IKI

BFT

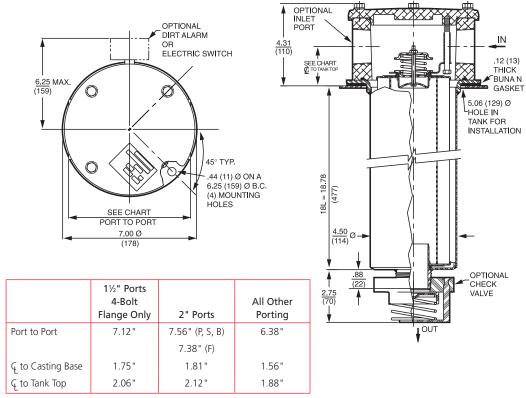
OT

KTK

_TK

MRT

	-
Type Fluid	Appropriate Schroeder Media
Petroleum Based Fluids	All E media (cellulose) and Z-Media® (synthetic)
High Water Content	All Z-Media® (synthetic)
Invert Emulsions	10 and 25 μ Z-Media® (synthetic)
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic)
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation
Skydrol®	3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)


Fluid Compatibility

Accessories For Tank-Mounted Filters

PAF

MAF

Optional mounting ring available to weld to tank.

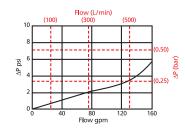
Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		tio Per ISO 4572/NI article counter (APC) cali	Filtration Ratio per ISO 1688 Using APC calibrated per ISO 11171				
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_{x}(c) \geq 1000$		
18LZ1	<1.0	<1.0	<1.0	<4.0	4.2		
18LZ3	<1.0	<1.0	<2.0	<4.0	4.8		
18LZ5	2.5	3.0	4.0	4.8	6.3		
18LZ10	7.4	8.2	10.0	8.0	10.0		
18LZ25	18.0	20.0	22.5	19.0	24.0		

Element	DHC (gm)	Element	DHC (gm)
18LZ1	224	18LDZ1	194
18LZ3	230	18LDZ3	199
18LZ5	238	18LDZ5	194
18LZ10	216	18LDZ10	186
18LZ25	186	18LDZ25	169

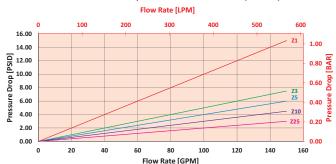
Element Collapse Rating: 150 psid (10 bar)


Flow Direction: Outside In

 $\textbf{Element Nominal Dimensions:} \qquad 4.0 \text{" } (100 \text{ mm}) \text{ O.D. x } 18.5 \text{" } (470 \text{ mm}) \text{ long}$

LRT

 $\triangle \textbf{P}_{\text{housing}}$


LRT $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle P_{element}$

18LZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 120 gpm (379 L/min) for LRT18LZ10S24S24NY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 120 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the LRT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 120 gpm. In this case, $\Delta P_{\text{element}}$ is 4 psi (.27 bar) according to the graph for the 18LZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\triangle \mathbf{P}_{\text{housing}} = 8 \text{ psi } [.55 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 4 \text{ psi } [.27 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta P_{\text{filter}} = 3 \text{ psi} + (4 \text{ psi} * 1.1) = 7.4 \text{ psi}$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .21 \text{ bar} + (.27 \text{ bar} * 1.1) = .51 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_f$. Plug

 $\Delta \boldsymbol{P}_{\text{element}} = Flow \ \text{Rate x } \Delta \boldsymbol{P}_f \ \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	∆P
18LDZ1	0.12
18LDZ3	0.06
18LDZ5	0.05
18LDZ10	0.03
18LDZ25	0.02

DUA 3

POV 2

Port A

F20 = 11/4" SAE 4-bolt flange Code 61

 $F24 = 1\frac{1}{2}$ " SAE 4-bolt flange Code 61

F32 = 2" SAE 4-bolt flange Code 61

M = Metric SAE 4 bolt flange

P16 = 1" NPTF

P20 = 11/4" NPTF

P24 = 11/2" NPTF

P32 = 2" NPTF

S16 = SAE-16

S20 = SAF-20

S24 = SAE-24

S32 = SAE-32

B24 = ISO 228 G-11/2"

Filter Model Number Selection

Highlighted product eligible for QuickDelivery

How to Build a Valid Model Number for a Schroeder LRT:

DOV 5

- 1	DOX I	DOX 2	DOAG	DOX 4	DOX 3		DOV OD	DOX /	DOX 0		
	LRT -								-		
	Example: NOTE: Only box 8 may contain more than one option										
- [ROY 1	ROY 2	BUX 3	B∪X /I	BOX 5	BOX 6V	BOX 6B	ROX 7	B∪X 8		

POVEN POVED POVE

POV 4

LRT -	- 18 - LZ10	- S24 S24 N	BOX 6A BOX 6B	Y2 –	= LRT18LZ10S24S24NY2
BOX 1	BOX 2		BOX 3		BOX 4

Element Filter Series Element Size and Media Seal Material Length (in) **LRT** L3 = L size 3 µ E media (cellulose) 18 Omit = Buna N L10 = L size 10 μ E media (cellulose) H = EPR**GLRT** = Anodized LZ1 = L size 1 μ Excellement® Z-Media® (synthetic) (GeoSeal®) W Aluminum Parts LZ3 = L size 3 µ Excellement® Z-Media® (synthetic) LZ5 = L size 5 μ Excellement® Z-Media® (synthetic) $H.5 = Skydrol^{\otimes}$ compatibility

LZ10 = L size 10 μ Excellement® Z-Media® (synthetic) LZ25 = L size 25 μ Excellement® Z-Media® (synthetic)

LDZ1 = L size DirtCatcher® 1 µ Excellement® Z-Media® LDZ3 = L size DirtCatcher® 3 u Excellement® Z-Media®

LDZ5 = L size DirtCatcher® 5 μ Excellement® Z-Media®

LDZ10 = L size DirtCatcher® 10 μ Excellement® Z-Media® LDZ25 = L size DirtCatcher® 25 μ Excellement® Z-Media®

GeoSeal® Element Options

LGZ1 = L size 1 μ Excellement® Z-Media® (synthetic)

LGZ3 = L size 3 µ Excellement® Z-Media® (synthetic)

LGZ5 = L size 5 µ Excellement® Z-Media® (synthetic) LGZ10 = L size 10 μ Excellement® Z-Media® (synthetic)

LGZ25 = L size 25 µ Excellement® Z-Media® (synthetic)

BOX 5

Port B

F20 = 11/4" SAE 4-bolt flange Code 61

F24 = 11/2" SAE 4-bolt flange Code 61

F32 = 2" SAE 4-bolt flange Code 61

Specification of all 3 ports is required **Inlet Porting**

N = None

P16 = 1" NPTF

P20 = 11/4" NPTF

P24 = 11/2" NPTF

P32 = 2" NPTF

S16 = SAE-16

S20 = SAE-20

S24 = SAE-24

S32 = SAE-32

B24 = ISO 228 G-11/2"

BOX 6A

Bypass Option Omit = 25 psi bypass setting 40 = 40 psi bypass setting 50 = 50 psi bypass setting

BOX 6B

Outlet Porting Options

Omit = 2 " NPT male C = Check valve

D = Diffuser

T = 13" Tube ext. A = Non-thread outlet

BOX 8 BOX 7

Port C

Inlet Porting Location

N = None

P2 = 1/8" NPTF

P16 = 1" NPTF

S16 = SAE-16

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Example: 18LZ10
- Box 4. For options H, W, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol® is a registered trademark of Solutia Inc.
- Box 5. If using Port B, Port A & B must always be the same type and size. Example: (A) P20 (B) P20 (C) P16.
- Box 6. See also "Accessories for Tank-Mounted Filters," page 307.

Dirt Alarm® Options

Omit = None Visual Y2 = Back-mounted tri-color gauge Located ES = Electric switch Port D Electrical ES1 = Heavy-duty electric switch with conduit connector Y2C = Bottom-mounted tri-color gauge Located Visual in cap Y5 = Back-mounted gauge in cap Visual Y2R = Back-mounted gauge mounted on opposite side of standard location Located ESR = Electric switch mounted on opposite side of standard location Port C Electrical ES1R = Heavy-duty electric switch with conduit connector

Add. Options

Omit = None G2293 = Cork gasket G547 = Two 1/8" gauge ports G820 = Stamped cap

Features and Benefits

■ Compact, lightweight, low pressure tank mounted filter ideal for mobile applications

- Lightweight plastic bowl
- ART aluminum alloy is designed to be water tolerant - anodization is not required for use with water based fluids (HWCF).
- Special filter element design provides aftermarket benefits.
- Various Dirt Alarm[®] options

225 gpm 850 L/min 145 psi 10 bar

Filter Housing

Fluid

Compatibility

Specifications

KF3 KL3

TF1

MLF1

MTA

KFT

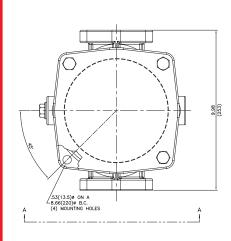
ART

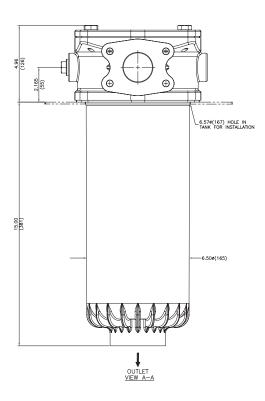
KTK

MRT

Mounted

Model No. of filter in photograph is ART85Z10F43.


Flow Rating:	Up to 225 gpm (850 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	145 psi (10 bar)
Min. Yield Pressure:	535 psi (37 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	145 psi (10 bar), per NFPA T2.6.1
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 43 psi (3 bar) Full Flow: 69 psi (4.75 bar)
Porting Head & Cap: Element Case:	Aluminum Plastic
Weight of ART:	15 lbs. (7 kg)
Element Change Clearance:	16.39" (340 mm)


Appropriate Schroeder Media Type Fluid

Petroleum Based Fluids All Z-Media® (synthetic) High Water Content All Z-Media® (synthetic)

ART

Tank-Mounted Filter

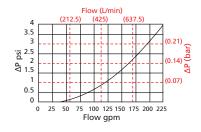
Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		o per ISO 16889 ated per ISO 11171		
Element	$\beta_{x}(c) \geq 200$	$\beta_{x}(c) \geq 1000$		
85Z1	<4.0	4.2		
85Z3	<4.0	4.8		
85Z5	4.8	6.3		
85Z10	8.0	10.0		
85Z25	19.0	24.0		

Element	DHC (gm)	
85Z1	185	
85Z3	147	
85Z5	206	
85Z10	164	
85Z25	167	

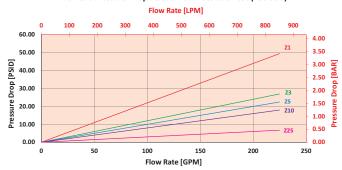
Element Collapse Rating: 150 psid (10 bar)


Flow Direction: Outside In

Element Nominal Dimensions: 4.5" (114.3 mm) O.D. x 13.8" (350.52 mm) long

ART

 $\triangle \textbf{P}_{\text{housing}}$


ART $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \textbf{P}_{element}$

85Z

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 120 gpm (379 L/min) for ART85Z10F43Y2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 120 gpm. In this case, $\Delta P_{\text{housing}}$ is 1 psi (.07 bar) on the graph for the ART housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 120 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 10 psi (.69 bar) according to the graph for the 85Z10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

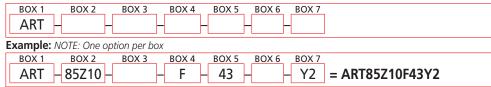
Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 1 \text{ psi } [.07 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 10 \text{ psi } [.69 \text{ bar}]$

 $V_f = 160 \text{ SUS (34 cSt)} / 150 \text{ SUS (32 cSt)} = 1.1$

 $\Delta \mathbf{P}_{\text{filter}} = 1 \text{ psi} + (10 \text{ psi} * 1.1) = 12 \text{ psi}$

<u>OR</u>


 $\Delta \mathbf{P}_{\text{filter}} = .07 \text{ bar} + (.69 \text{ bar} * 1.1) = .83 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder ART:

BOX 1

Filter Series

ART

BOX 2

BOX 3

Seal Material

Seal Material

Seal Material

Omit = Buna N

H = EPR

BOX 3

Seal Material

Omit = Buna N

H = EPR

BOX 4

Porting

F = 2½" SAE-40 4-bolt flange Code 61

S = SAE-32

SS = Dual SAE-32

BOX 5

BoX 6

Ada BoX 5

BOX 6

Bypass Setting

43 = 43 psi Bypass

Omit = 2" ISO 228 G thread

BOX 7

	Dirt Alarm® Options									
	•									
	Omit = None									
	Y2 = Back-mounted tri-color gauge									
Visual	Y2R = Back-mounted gauge mounted on opposite side of standard location									
	ES = Electric switch (normally open)									
	ESR = Electric switch mounted on opposite side of standard location									
Electrical	ES1 = Heavy-duty electric switch with conduit connector									
	ES1R = Heavy-duty electric switch with conduit connector mounted on opposite side of standard location									
	ES2 = Super duty electric switch with Thermal Lockout and 2 pin Deutsche connector (DT04-2P, SPST, normally closed)									

NOTES:

- Box 2. Replacement element part numbers are identical to contents of Boxes 2 and 3.
- Box 3. For option H, all aluminum parts are anodized.

to 160 gpm to 600 L/min

to 145 psi to 10 bar

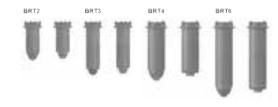
TF1

KF3

KL3

MLF1

KFT



Features and Benefits

■ Filter is mounted in the tank and flow comes to it from a pipe connection below it or from the

- Optimal flow conditions created by flow from beneath guaranteeing optimal air separation, even tank mixing, and long element service intervals
- Patented de-aeration windows around the housing offer superior air bubble coalescence in a 360 degree discharge
- Quality Protected Inside-Out Flow Element Design

Part of Schroeder Industries Energy Savings Initiative

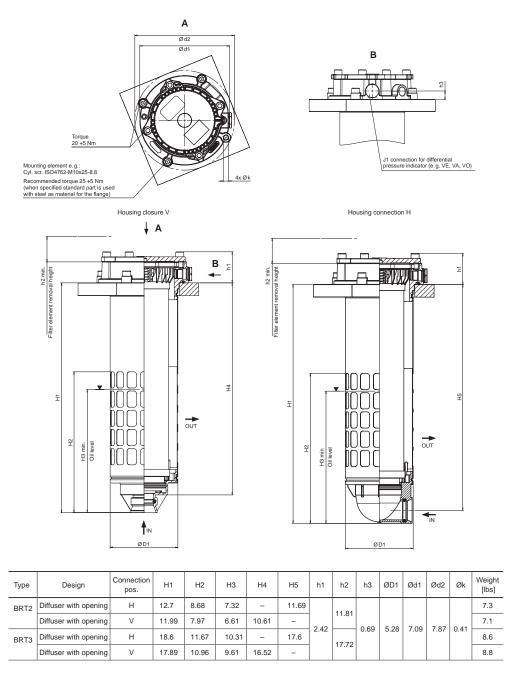
Model No. of filter in photograph is BRT6RBZ102.

Filter Housing **Specifications**

Up to 160 gpm (600 L/min) for 150 SUS (32 cSt) fluids Flow Rating: Max. Operating Pressure: 145 psi (10 bar) Temp. Range: -22°F to 248°F (-30°C to 120°C) Bypass Setting: Cracking: 36 psi (2.5 bar) Filter Head & Cover: BRT 2 - 6: Aluminum Inlet Section: Nylon (PA66) Seals Buna N Installation: As in-tank filter

BRT

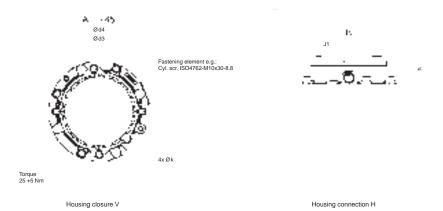
KTK

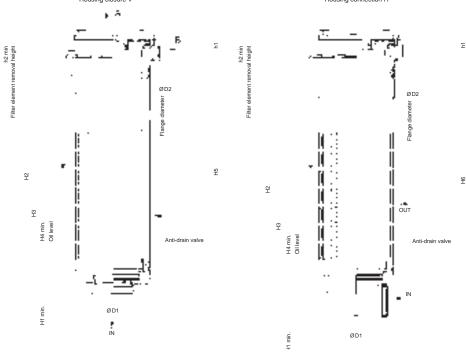

MRT

Type Fluid	Appropriate Schroeder Media
Hydraulic Oils	Schroeder Z-Media® (synthetic)
Lubrication Oils	Schroeder Z-Media® (synthetic)
Compressor Oils	Schroeder Z-Media® (synthetic)
Biodegradable Operating Fluids	Schroeder Z-Media® (synthetic)

Fluid Compatibility

Dimensions BRT2 - BRT3

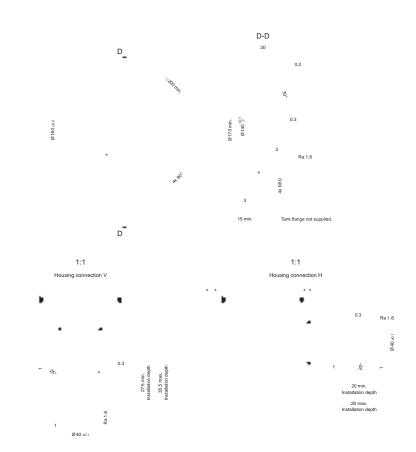



Element Performance Information

		Ratio Per ISO 4572/NFP article counter (APC) ca	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 1117			
Element	ß _X ≥ 75	$\beta_{\mathbf{X}} \ge 100$	β _{X} ≥ 200	β _χ (c) ≥ 200	β _χ (c) ≥ 1000	
2RBZ10	C/F	C/F	C/F	C/F	11.2	
2RBZ25	C/F	C/F	C/F	C/F	16.2	
3RBZ10	C/F	C/F	C/F	C/F	11.2	
3RBZ25	C/F	C/F	C/F	C/F	16.2	
4RBZ10	C/F	C/F	C/F	C/F	11.2	
4RBZ25	C/F	C/F	C/F	C/F	16.2	
6RBZ10	C/F	C/F	C/F	C/F	11.2	
6RBZ25	C/F	C/F	C/F	C/F	16.2	

BRT

Туре	Design	Connection position	H1	H2	НЗ	H4	H5	H6	h	h1	h2	ØD1	ØD2	Øk	Weight [lbs]
BRT4	Diffuser with opening	Н	10	18.37	12.09	9.21	-	16.85	0.69	2.42	16.9	6.06	8.07	0.41	9.9
	Diffuser with opening	V	10	16.63	10.34	7.17	15.5	-							9.5
BRT6	Diffuser with opening	Н	10	24.16	15.09	12.2	-	22.65							12.1
	Diffuser with opening	V	10	22.11	13.04	10.16	21.3	-							11.7


	DHC		DHC
Element	(g)	Element	(g)
2RBZ10	70.4	4RBZ10	152.5
2RBZ25	77.8	4RBZ25	173.4
3RBZ10	114.3	6RBZ10	190.4
3RBZ25	128.3	6RBZ25	231.7

Element Burst Rating: 87 psi (6 bar) for standard elements

Flow Direction: Inside Out

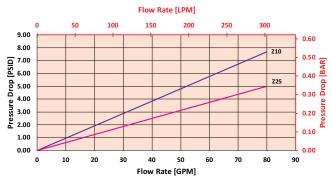
Element Dirt Holding Capacity & Burst Rating

Dimensions BRT2 - BRT3

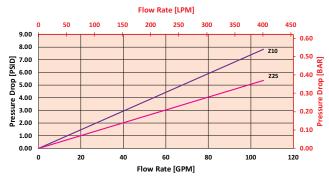
Dimensions BRT4 - BRT6

BRT

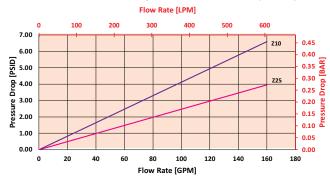
 $\triangle \mathbf{P}_{\text{element}}$


BRT2

Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS)


BRT3

Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS)


BRT4

Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

BRT6


Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Filter Model Number Selection

VO = visual

up to 634 gpm

up to 2400 L/min to 145 psi to 10 bar

KF3

KL3

MLF1

KFT

Features and Benefits

- Filter head is mounted on the tank like a standard return-line filter solution
- The protective tube can be supplied in various optional versions: 1.) as a closed tube with the outlet opening facing downwards or with a closed base and rows of operating holes at the height of the tank's oil level 2.) with an optional magnetic core connected to the filter element guaranteeing effective magnetic pre-filtration
- Patented de-aeration windows around the housing offer superior air bubble coalescence in a 360 degree discharge
- Quality Protected Element Design

► Part of Schroeder Industries Energy Savings Initiative

TRT2 TRT3 TRT4 TRT5

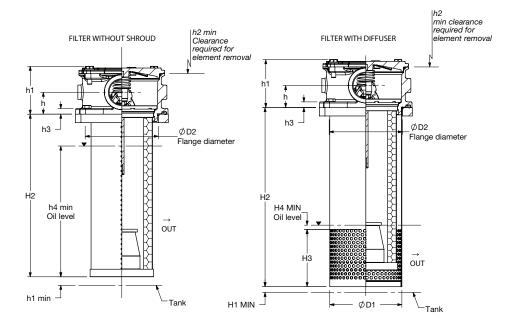
Model No. of filter in photograph is TRT5RTZ10G.

Filter Housing

Specifications

Flow Rating:	Up to 634 gpm (2400 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	145 psi (10 bar)
Temp. Range:	-22°F to 248°F (-30°C to 120°C)
Bypass Setting:	Cracking: 36 psi (2.5 bar)
Filter Head & Cover:	Aluminum
Filter Housing:	Steel
Inlet Section:	Nylon (PA66)
Seals:	Can Drop (= Perbunan Drop)
Installation:	As in-tank filter

KTK

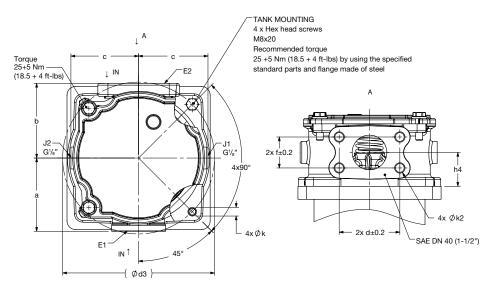

MRT

Type Fluid	Appropriate Schroeder Media
Hydraulic Oils	Schroeder Z-Media® (synthetic)
Lubrication Oils	Schroeder Z-Media® (synthetic)
Compressor Oils	Schroeder Z-Media® (synthetic)
Biodegradable Operating Fluids	Schroeder Z-Media® (synthetic)

Fluid Compatibility

Dimensions TRT2

Element Performance Information

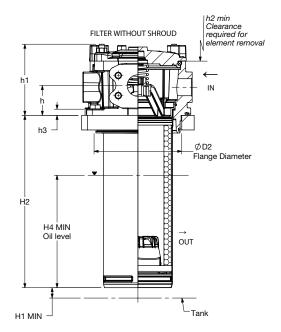

		Ratio Per ISO 4572/NFP article counter (APC) ca		Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11					
Element	ß _X ≥ 75	$\beta_{\mathbf{X}} \ge 100$	$\beta_{\boldsymbol{X}} \geq 200$	β _χ (c) ≥ 200	β _{X} (c) ≥ 1000				
2RTZ10	C/F	C/F	C/F	C/F	12.3				
2RTZ25	C/F	C/F	C/F	C/F	16.2				
3RTZ10	C/F	C/F	C/F	C/F	12.3				
3RTZ25	C/F	C/F	C/F	C/F	18.6				
4RTZ10	C/F	C/F	C/F	C/F	12.3				
4RTZ25	C/F	C/F	C/F	C/F	18.6				
5RTZ10	C/F	C/F	C/F	C/F	12.3				
5RTZ25	C/F	C/F	C/F	C/F	18.6				

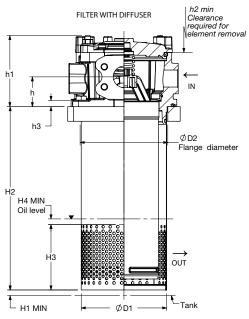
Element Dirt Holding Capacity & Burst Rating

	DHC		DHC
Element	(g)	Element	(g)
2RTZ10	81.0	4RTZ10	199.1
2RTZ25	89.9	4RTZ25	221.0
3RTZ10	150.5	5RTZ10	242.8
3RTZ25	167.1	5RTZ25	269.5

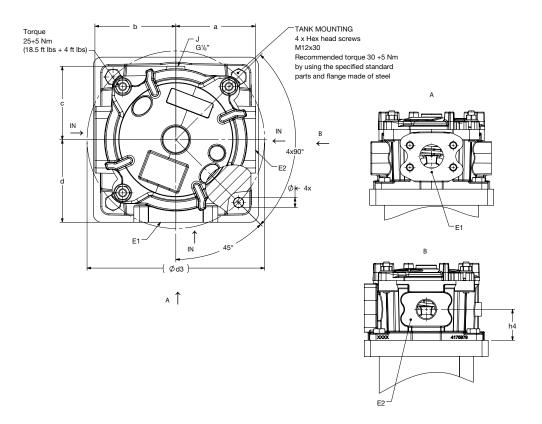
Element Burst Rating: 87 psi (6 bar) for standard elements **Flow Direction:** Inside Out

Return Line Filter TRT




	Shroud Version		H2	НЗ	H4	h	h1	h2	h3	h4	ØD1	ØD2	Ød3	а	b	С	d	f	Øk	Øk2	Wt (lbs)
	Without shroud	[0.39]	[8.58] 218	-	[6.1] 155		[3.35] 85	[10.24] 260	[0.39] 10		1			6.89] [3.33] 175 84.5	86.0* 8 [3.33] [3	[3.15] 80* [3.07] 78**	[2.75] 69.9	[1.48] 37.5	[0.39] 10		5.7
	With shroud	10		-	[1.97] 50	[1.54] 39				-											7.1
TRT2	With diffuser	[0.2]	[9.72] 247	[4.02] 102	[0.39]						[5.04] 128	[5.31] 135								M12	7.5
	with opening	_		[4.96] 126	10																7.7

^{*} Non-machined port ** Machined port



Dimensions TRT3, 4, 5

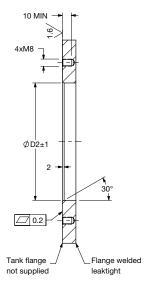
Return Line Filter TRT

Туре	Design	Н1	H2	НЗ	H4	h	h1	h2	h3	h4	ØD1	ØD2	Ød3	а	b	С	d	Øk	Wt (lbs)
	Without shroud	[0.39]	[12.03] 305.5	-	[7.87] 200						-								9.3
TRT3	With shroud	10		-	[2.36] 60			[16.54] 420											10.8
	With diffuser	[0.2]	[12.83] 326	[4.53] 115	[0.39]			720			[5.98] 152								11.0
	Diffuser with opening	5		[6.22] 158	10		[4.98] 126.5												11.2
	Without shroud	[0.39]	[15.96] 405.5	-	[10.63] 270	2.36] 60 [2.09] 53		[20.47] 5 520	[0.43] 11		-							9.9	
TRT4	With shroud	10		1	[2.36] 60					[1.97] 50		[6.14] [8.4 156 21			[3.80]	91* [3.50]	[3.94]	[0.49] 12.5	11.9
	With diffuser	[0.2]	[16.77] 426	1	[0.39]						[5.98] 152		215	[3.80] 96.5**					12.1
	Diffuser with opening	5			10														12.3
	Without shroud	[0.39]	[19.51] 495.5	-	[12.99] 330						-								11.0
TRT5	With shroud	10		-	[2.36] 60			[24.02]											13.2
	With diffuser	(O O) E	[20.31] 516	[4.53] 115	[0.39]	[0.39]		610			[5.98] 152								13.4
	Diffuser with opening	[0.2] 5		[10.63] 270	10														13.7

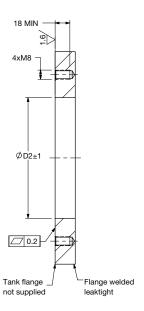
^{*} Non-machined port ** Machined port

Dimensions TRT2

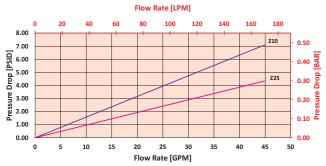

Dimensions


TRT3, 4, 5

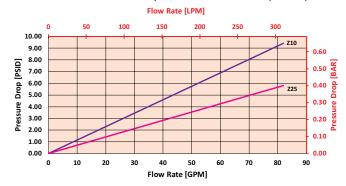
Specifications For The Tank Flange


- 1. In the filter mounting interface, the tank flange should have a maximum flatness of 0.3 mm and maximum roughness of Ra 3.2 µm.
- $2. \ \mbox{ln}$ addition, the mounting interface should be free from damage and scratches.
- 3. The mounting holes of the flange must be blind, or stud bolts. Loctite must be used to mount the filter. As an alternative, the tank flange can be continuously welded from the inside.
- 4. Both the tank sheet metal and the filter mounting flange must be sufficiently robust so that neither deform when the seal is compressed during tightening.

TRT2



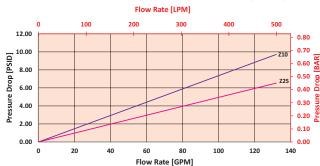
 $\triangle \textbf{P}_{\text{element}}$


TRT2

Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

TRT3

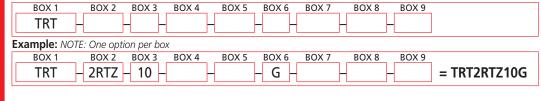
Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS)


TRT4

Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

TRT5

Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS)



Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Return Line Filter

Filter Model Number Selection

BOX 5	BOX 6	BOX 7
Magnet	Porting	Housing Option
Omit = no magnetic core	G = 1 1/2" G	Omit = standard housing with diffuser
M = Magnet	S = 1 1/2 " SAE	X = no housing tube

BOX 8		BOX 9		
Seal Material		Dirt Alarm® Options		
Omit = Buna N		Omit = No Indicator, sealed up w/ screw plug		
V = Viton®		VA = visual/electrical		
	Clogging Indicators	VE = electrical		
	malcators	VO = visual		

Flow Rating:

Temp. Range:

Bypass Setting:

Element Case: Weight of BFT-1BB: 100 psi (7 bar)

Aluminum

36.7 lbs. (16.6 kg)

14.75" (375 mm)

250 psi (17 bar), per NFPA T2.6.1

Contact factory, per NFPA T2.6.1

-20°F to 225°F (-29°C to 107°C) Cracking: 25 psi (1.7 bar)

Full Flow: 52 psi (3.6 bar)

Max. Operating Pressure:

Rated Fatigue Pressure:

Min. Yield Pressure:

Porting Head & Cap:

Element Change Clearance:

Features and Benefits

■ Low pressure tank-mounted filter

- Designed for high return line flows
- Dual inlet porting options available
- Top, side or bottom mounting
- Optional check valve prevents reservoir siphoning
- Special filter element design provides aftermarket benefits
- Also available with DirtCatcher® element (BBD)

Up to 300 gpm (1135 L/min) for 150 SUS (32 cSt) fluids

■ Cast iron head available

300 gpm 1135 L/min 100 psi 7 bar

KF3

KL3

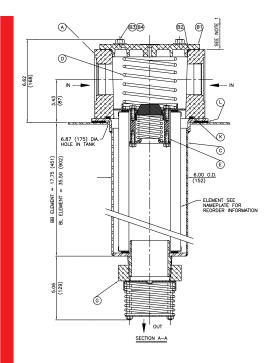
MLF1

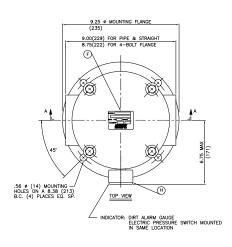
KFT

KTK

MRT

Type Fluid	Appropriate Schroeder Media
Petroleum Based Fluids	All E media (cellulose) and Z-Media® (synthetic)
High Water Content	All Z-Media® (synthetic)
Invert Emulsions	10 and 25 μ Z-Media® (synthetic)
Water Glycols	3, 5, 10 and 25 μ Z-Media [®] (synthetic)
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation
Skydrol®	3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)


Fluid Compatibility


Filter

Housing

Specifications

NOTES:

1.) 14.75 (375) MINIMUM CLEARANCE REQUIRED FOR ELEMENT REMOVAL.

EE DWG. D-5628 FOR SERIES ORIGINAL AND SERIES "A"

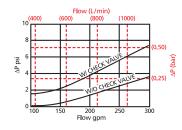
Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		io Per ISO 4572/N article counter (APC) cal			o per ISO 16889 ated per ISO 11171
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
BB/BLZ1	<1.0	<1.0	<1.0	<4.0	4.2
BB/BLZ3	<1.0	<1.0	<2.0	<4.0	4.8
BB/BLZ5	2.5	3.0	4.0	4.8	6.3
BB/BLZ10	7.4	8.2	10.0	8.0	10.0
BB/BLZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
BBZ1	268	BBDZ1	205	BLZ1	536
BBZ3	275	BBDZ3	163	BLZ3	550
BBZ5	301	BBDZ5	229	BLZ5	550
BBZ10	272	BBDZ10	183	BLZ10	550
BBZ25	246	BBDZ25	186	BLZ25	550

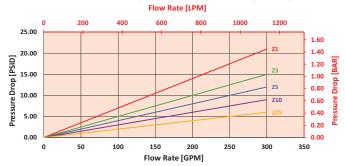
Element Collapse Rating: 150 psid (10 bar)

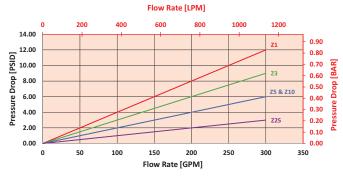

Flow Direction: Outside In

Element Nominal Dimensions: BB: 5.0" (125 mm) O.D. x 18.0" (460 mm) long

BL: 5.0" (125 mm) O.D. x 36.0" (920 mm) long

 $\triangle \textbf{P}_{\text{housing}}$


BFT $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle P_{element}$

BBZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

BLZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$$

Exercise:

Determine ΔP_{filter} at 200 gpm (758 L/min) for BFT1BBZ10PY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.5 psi (.10 bar) on the graph for the BFT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 200 gpm. In this case, $\Delta P_{\text{element}}$ is 6 psi (.41 bar) according to the graph for the BBZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

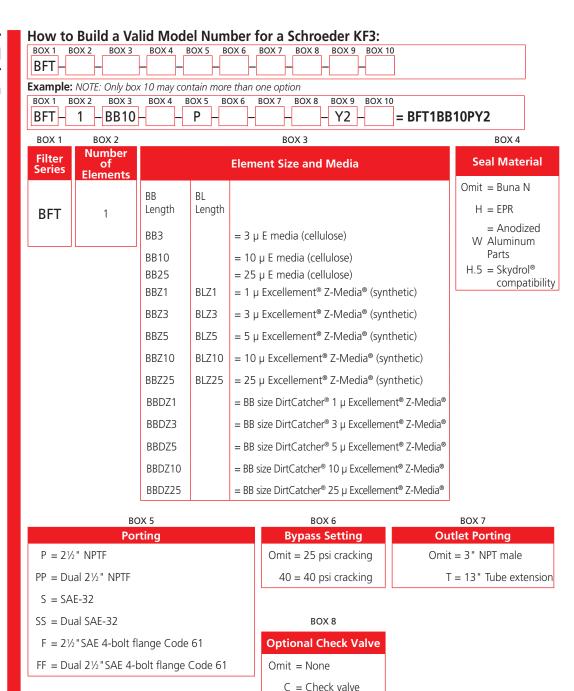
 $\Delta \mathbf{P}_{\text{housing}} = 1.5 \text{ psi } [.10 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 6 \text{ psi } [.41 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 1.5 \text{ psi} + (6 \text{ psi} * 1.1) = 8.1 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .10 \text{ bar} + (.41 \text{ bar} * 1.1) = .55 \text{ bar}$


Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f \text{ Plug this variable into the overall pressure drop equation.}$

•	•	•	
Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
BB10	0.03	BL10	0.01
BB25	0.01	BL25	0.01
BBDZ1	0.08	BLDZ1	0.16
BBDZ3	0.06	BLDZ3	0.12
BBDZ5	0.05	BLDZ5	0.10
BBDZ10	0.04	BLDZ10	0.08
BBDZ25	0.02	BLDZ25	0.04

Filter Model Number Selection

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4. E media elements are only available with Buna N seals.
- Box 4. For options H, W, and H.5 all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol® is a registered trademark of Solutia Inc.
- Box 8. See also "Accessories for Tank-Mounted Filters," page 307.

BOX 9 BOX 10

Dirt Alarm® Options Additional Options Omit = None Omit = None G547 = Two 1/8" gauge ports Y2 = Back-mounted tri-color gauge G1476 = Three-terminal electric switch Visual Y2R = Back-mounted gauge mounted on opposite side M = Metric thread for SAE 4-bolt flange mounting holes (specify after each port designation) 40 = 40 psi bypass setting of standard location ES = Electric switch ESR = Electric switch mounted on opposite side of standard location Electrical

ES1 = Heavy-duty electric switch with conduit connector

ES1R = Heavy-duty electric switch with conduit connector

mounted on opposite side of standard location

Flow Rating:

Temp. Range:

Bypass Setting:

Porting Head:

Element Case:

Max. Operating Pressure:

Rated Fatigue Pressure:

Min. Weight of QT-16Q: Min. Weight of QT-39Q:

Element Change Clearance:

Min. Yield Pressure:

Features and Benefits

- Low pressure tank-mounted filter
- Designed for high return line flows
- Tank-mounted unit saves space, reduces plumbing
- Cap handles provide for easy element changeout
- Offered with standard Q, QW, and QPML deep-pleated elements in 16" and 39" lengths with Viton® seals as the standard seal option

450 gpm 1700 L/min 100 psi 7 bar

TF1

KF3

KL3

LF1

VILF1

RID

GRTR

IVIII

ZT

KFT

RT

RTI

RTI

LRT

ART

DDT

TDT

RFT

QT

KTK

LTK

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® media (synthetic)

Up to 450 gpm (1700 L/min) for 150 SUS (32 cSt) fluids

High Water Content All Z-Media® and ASP® media (synthetic)

100 psi (7 bar)

Steel

300 psi (21 bar), per NFPA T2.6.1 100 psi (7 bar), per NFPA T2.6.1-R1-2005

-20°F to 225°F (-29°C to 107°C)

Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)

100.0 lbs. (46 kg)

158.0 lbs. (72 kg)

16Q 12.0" (305 mm)

39Q 33.8" (859 mm)

Invert Emulsions $\,$ 10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)

Water Glycols 3, 5, 10 and 25 μ Z-Media® and all ASP® media (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and all ASP® media (synthetic)

Fluid Compatibility

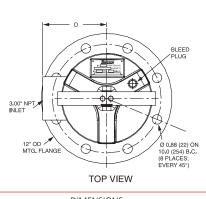
Filter

Housing

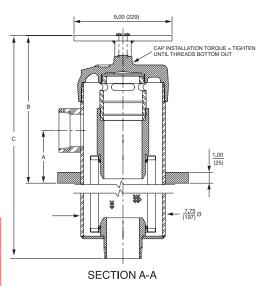
Specifications

Accessories For Tank Mounted

Filters


PAF

MAF.


SCHROEDER INDUSTRIES 293

ME

	TOT VIEW					
INLET PORT						
SIZE*	А	В	С	D		
3"	4.85 (123)	14.62 (371)	16Q: 30.43 (773) 39Q: 52.25 (1327)	5.88 (149)		
4"	5.75 (146)	16.12 (409)	16Q: 30.43 (773) 39Q: 52.25 (1327)	6.13 (156)		

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

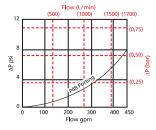
		 	er ISO 4572/NF counter (APC) calil		o per ISO 16889 ated per ISO 11171	
Element		$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
	Z1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/PMLZ25	18.0	20.0	22.5	19.0	24.0

Eleme	ent	DHC (gm)	Element	DHC (gm)
	Z1	276	PMLZ1	307
	Z3	283	PMLZ3	315
16Q	Z5	351	PMLZ5	364
	Z10	280	PMLZ10	330
	Z25	254	PMLZ25	299
	Z1	974	PMLZ1	1485
	Z3	1001	PMLZ3	1525
39Q	Z5	954	PMLZ5	1235
	Z10	940	PMLZ10	1432
	Z25	853	PMLZ25	1299

Element Collapse Rating: Q and QPML: 150 psid (10 bar)

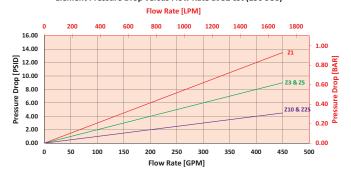
Flow Direction: Outside In

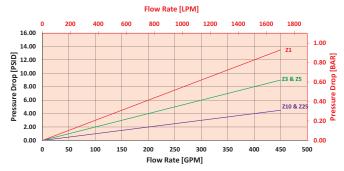
Element Nominal Dimensions: 16Q:


16Q: 6.0" (150 mm) O.D. x 16.85" (430 mm) long 16QPML: 6.0" (150 mm) O.D. x 16.00" (405 mm) long 39Q: 6.0" (150 mm) O.D. x 38.70" (985 mm) long 39QPML: 6.0" (150 mm) O.D. x 37.80" (960 mm) long

^{*}Outlet port is always 3".

 $\triangle \mathbf{P}_{\text{housing}}$


QT $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle \boldsymbol{P}_{element}$

39QZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QPMLZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 200 gpm (758 L/min) for QT16QZ3P48D5C using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 200 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the 16QZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\Delta \mathbf{P}_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\triangle P_{\text{filter}} = 2 \text{ psi} + (8 \text{ psi} * 1.1) = 10.8 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .14 \text{ bar} + (.55 \text{ bar} * 1.1) = .75 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_f$. Plug this variable into the overall pressure drop equation.

n essure u	ii op et	quation.	
Ele.	∆P	Ele.	$\triangle \mathbf{P}$
16QAS3V	0.04	16QPMLZ1	0.08
16QAS5V	0.04	16QPMLZ3	0.05
16QAS10V	0.03	16QPMLZ5	0.05
6QPMLAS3V	0.05	16QPMLZ10	0.04
6QPMLAS5V	0.05	16QPMLZ25	0.02
6QPMLAS10V	0.04	39QAS3V	0.01
16QZ1	0.09	39QAS5V	0.01
16QZ3	0.04	39QAS10V	0.01
16QZ5	0.04	39QPMLAS3V	0.02
16QZ10	0.03	39QPMLAS5V	0.02
16QZ25	0.01	39QPMLAS10V	0.01

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder QT:

Example: NOTE: One option per box

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10
QT -	- 16 -	Q	- Z -	- 3 -		- P48 -			_ D5C = QT16QZ3P48D5C

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6
Filter Series	Element Length (in)	Element Style	Media Type	Micron Rating	Housing Seal Material
QT	16 39	Q QCLQF QPML	Z = Excellement® Z-Media® (synthetic) W = W media (water removal)	1 = 1 μ Z-Media [®] 3 = 3 μ AS and Z-Media [®] 5 = 5 μ AS and Z-Media [®]	Omit = Buna N H = EPR V = Viton®
			AS = Anti-Static Pleat Media (synthetic)	10 = 10 μ AS and Z-Media [®] 25 = 25 μ Z-Media [®]	

BOX 7

P48 = 3" NPTF P64 = 4" NPTF

BOX 8

Inlet Porting

Bypass Setting

Omit = 30 psi cracking 15 = 15 psi cracking 40 = 40 psi cracking 50 = 50 psi cracking X = Blocked bypass

BOX 9

Outlet Porting

Omit = 3" NPT Male

C = Check valve

D = Diffuser

CD = Check valve and

	BOX 10
	Dirt Alarm® Options
	Omit = None
Visual	D5C = Visual pop-up in cap
Visual with Thermal Lockout	D8C = Visual w/ thermal lockout in cap
	MS5C = Electrical w/ 12 in. 18 gauge 4-conductor cable in cap
	MS5LCC = Low current MS5 in cap
	MS10C = Electrical w/ DIN connector (male end only) in cap
	MS10LCC = Low current MS10 in cap
Electrical	MS11C = Electrical w/ 12 ft. 4-conductor wire in cap
Liectrical	MS12C = Electrical w/ 5 pin Brad Harrison connector (male end only) in cap
	MS12LCC = Low current MS12 in cap
	MS16C = Electrical w/ weather-packed sealed connector in cap
	MS16LCC = Low current MS16 in cap
	MS17LCC = Electrical w/ 4 pin Brad Harrison male connector in cap
	MS5T = MS5 (see above) w/ thermal lockout in cap
	MS5LCT = Low current MS5T in cap
	MS10TC = MS10 (see above) w/ thermal lockout in cap
Electrical	MS10LCTC = Low current MS10T in cap
with Thermal	MS12TC = MS12 (see above) w/ thermal lockout
Lockout	MS12LCTC = Low current MS12T in cap
	MS16TC = MS16 (see above) w/ thermal lockout in cap
	MS16LCTC = Low current MS16T in cap
	MS17LCTC = Low current MS17T in cap
Electrical	MS13C = Supplied w/ threaded connector & light in cap
Visual	MS14C = Supplied w/ 5 pin Brad Harrison connector & light (male end) in cap
Electrical	MS13DCTC = MS13 (see above), direct current, w/ thermal lockout in cap
1.000.000	

MS14DCTC = MS14 (see above), direct current, w/ thermal lockout in cap

Visual MS13DCLCTC = Low current MS13DCT in cap

MS14DCLCTC = Low current MS14DCT in cap

with

Thermal

Lockout

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5, plus the letter V. *Example*: 16QZ1V
- Box 3. QCLQF element are not available in ASP® media.
- Box 4. E media elements are also available for the QT filter housing. Contact factory for more information.
- Box 4. For Option W, Box 3 must equal Q.
- Box 6. Viton® is a registered trademark of DuPont Dow Elastomers. All elements for this filter are supplied with Viton® seals. Seal designation in Box 6 applies to housing only.

Model No. of filter in photograph is KTKKKZ10.

Features and Benefits

- Special tank-mounted filter kit
- Includes: cap assembly, weld ring assembly, element and bushing
- Available with standard K, KK or 27K-size elements
- Bypass valve in cap assembly

100 gpm 380 Ľ/min 100 psi 7 bar

KL3

KF3

KFT

KTK

Type Fluid	Appropriate Schroeder Media
etroleum Based Fluids	All E media (cellulose), Z-Media® and ASP® media (synthetic)
High Water Content	All Z-Media® and all ASP® media (synthetic)
	40 105 714 1 0 140 4650 11 (11 11)

Element Change Clearance: 8.0" (205 mm) for K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K

Flow Rating: Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids

Max. Operating Pressure: 100 psi (7 bar) exclusive of tank design

Porting Cap: Die Cast Aluminum

Temp. Range: -20°F to 225°F (-29°C to 107°C) Bypass Setting: Cracking: 25 psi (1.7 bar)

Full Flow: 40 psi (2.8 bar)

Min. Yield Pressure: Contact factory Rated Fatigue Pressure: Contact factory

Weld Ring: Steel

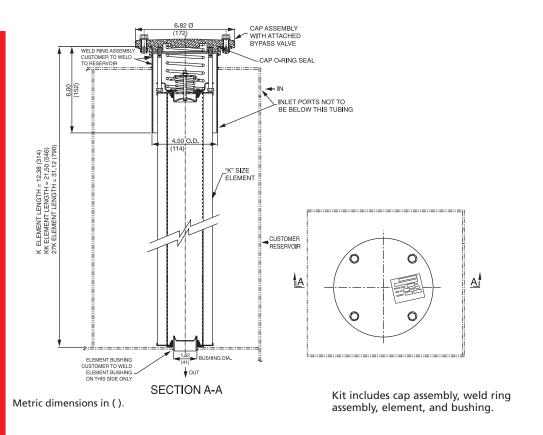
Petroleum I

Invert Emulsions 10 and 25 μ Z-Media[®] and 10 μ ASP[®] media (synthetic) Water Glycols 3, 5, 10 and 25 µ Z-Media® and all ASP® media (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation and ASP® media (synthetic)

Skydrol[®] 3, 5, 10 and 25 μ Z-Media[®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP® media (synthetic)

Fluid Compatibility


Filter

Housing

Specifications

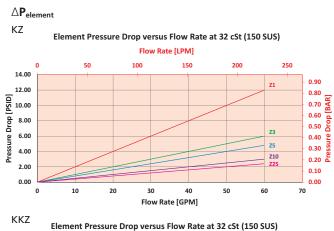
SCHROEDER INDUSTRIES 297

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				o per ISO 16889 ated per ISO 11171
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5	2.5	3.0	4.0	4.8	6.3
KZ10	7.4	8.2	10.0	8.0	10.0
KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5

Element	DHC (gm)								
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158

Element Collapse Rating: 150 psid (10 bar) for standard elements


Flow Direction: Outside In

Element Nominal Dimensions: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

*KTK Dirty Box Pressure Drop is Customer Tank Design Dependant. Please account for this when designing system.

Pressure Drop **Information** Based on Flow Rate and Viscosity

Flow Rate [LPM] 100 12.00 10.00 Pressure Drop [PSID] 8.00 6.00 0.30 4.00 Z10 0.20 2.00 0.10 0.00 0.00 0 100 120 Flow Rate [GPM]

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 80 gpm (303.2 L/min) for KTKKZ3 using 160 SUS (34 cSt) fluid.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 80 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the KZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}}^* \vee_f$). The $\Delta \mathbf{P}_{\text{element}}^*$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta \mathbf{P}_{\text{filter}} = (8 \text{ psi * 1.1}) = 8.8 \text{ psi}$

 $\Delta \mathbf{P}_{\text{filter}} = (.55 \text{ bar * 1.1}) = .61 \text{ bar}$

If your element is not graphed, use

the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f$ Plug this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZW1	0.43	2KZW1	-	3K10	0.03
KZW3	0.32	2KZW3/ KKZW3	0.16	3K25	0.01
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS3/ 27KAS3	0.03
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS5/ 27KAS5	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KAS10/ 27KAS10	0.02

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder KTK:

	BOX 1 KTK	BOX 2	BOX 3	BOX 4	BOX 5		
Ī	Example: NO	TE: One option	per box				
	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5		
	KTK	– K –	- Z3	-	-	= KTKKZ3	

BOX 1 BOX 2 BOX 3 Filter Element **Element Part Number** Series Length $3 = 3 \mu E \text{ media (cellulose)}$ Κ **KTK** KK10 = 10 μ E media (cellulose) 27K $25 = 25 \mu E \text{ media (cellulose)}$ Z1 = 1 μ Excellement® Z-Media® (synthetic) Z3/AS3 = 3 μ Excellement® Z-Media® (synthetic) $Z5/AS5 = 5 \mu Excellement^{\circ} Z-Media^{\circ} (synthetic)$ Z10/AS10 = 10 μ Excellement® Z-Media® (synthetic) Z25 = 25 μ Excellement® Z-Media® (synthetic) ZW1 = 1 μ Aqua-Excellement™ ZW media ZW3 = 3 µ Aqua-Excellement[™] ZW media ZW5 = 5 µ Aqua-Excellement[™] ZW media ZW10 = 10 μ Aqua-Excellement™ ZW media ZW25 = 25 μ Aqua-Excellement™ ZW media ZW1 = 1 μ Aqua-Excellement[™] ZW media ZW3 = 3 µ Aqua-Excellement[™] ZW media ZW5 = 5 μ Aqua-Excellement™ ZW media ZW10 = 10 μ Aqua-Excellement™ ZW media

BOX 4

Seal Material

Omit = Buna N

H = EPR

W = Buna N

H.5 = Skydrol® Compatibility

BOX 5

Dirt Alarm® Options

ZW25 = 25 μ Aqua-Excellement™ ZW media

Omit = None

Visual Y2C = Bottom-mounted gauge in cap

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 2, 3, and 4.
- Box 4. For options H and W, cap is anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol® is a registered trademark of Solutia Inc.

Model No. of filter in photograph is LTK18LZ3.

Flow Rating:

Temp. Range: Bypass Setting:

Porting Cap:

Weld Ring:

Max. Operating Pressure:

Rated Fatigue Pressure:

Element Change Clearance:

Min. Yield Pressure:

Features and Benefits

- Special tank-mounted filter kit
- Includes: cap assembly, weld ring assembly, element and bushing
- Available with standard 18L sized element
- Bypass valve in cap assembly

Up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids

100 psi (7 bar) exclusive of tank design

-20°F to 225°F (-29°C to 107°C)

Cracking: 25 psi (1.7 bar) Full Flow: 47 psi (3.2 bar)

Die Cast Aluminum

17.0" (435 mm)

Contact factory

Contact factory

150 gpm 570 Ľ/min 100 psi *7 bar*

KL3

KF3

KFT

KTK

Filter Housing **Specifications**

Type Fluid Appropriate Schroeder Media

Steel

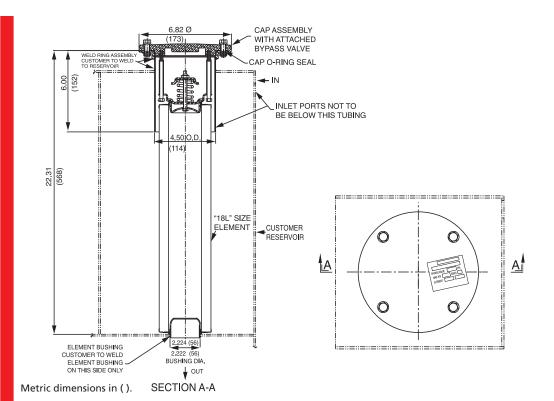
Petroleum Based Fluids All E media (cellulose) and Z-Media® (synthetic)

High Water Content All Z-Media® (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic)

Water Glycols 3, 5, 10 and 25 μ Z-Media[®] (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation


Skydrol[®] 3, 5, 10 and 25 μ Z-Media[®] (synthetic) with H.5 seal designation (EPR seals and

stainless steel wire mesh in element, and light oil coating on housing exterior)

Fluid Compatibility

SCHROEDER INDUSTRIES 301

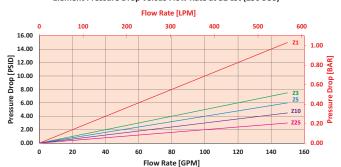
Element Performance Information & Dirt Holding Capacity

		tio Per ISO 4572/NF article counter (APC) calil		o per ISO 16889 ated per ISO 11171	
Element	β _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_{x}(c) \geq 200$	$\beta_{x}(c) \geq 1000$
18LZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LZ3	<1.0	<1.0	<2.0	<4.0	4.8
18LZ5	2.5	3.0	4.0	4.8	6.3
18LZ10	7.4	8.2	10.0	8.0	10.0
18LZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)
18LZ1	224
18LZ3	230
18LZ5	238
18LZ10	216
18LZ25	186

Element Collapse Rating: 150 psid (10 bar)
Flow Direction: Outside In

Element Nominal Dimensions: 4.0" (100 mm) O.D. x 18.5" (470 mm) long



*LTK Dirty Box Pressure Drop is Customer Tank Design Dependant. Please account for this when designing system. Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

18LZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 80 gpm (303.2 L/min) for LTK18LKZ3 using 160 SUS (34 cSt) fluid.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 80 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 4 psi (.27 bar) according to the graph for the 18LZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

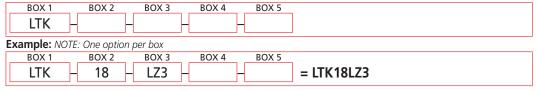
Finally, the overall filter pressure differential, $\triangle P_{\text{filter}}$, is calculated by adding $\triangle P_{\text{housing}}$ with the true element pressure differential, ($\triangle P_{\text{element}} * V_f$). The $\triangle P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{element}} = 4 \text{ psi } [.27 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\triangle \mathbf{P}_{\text{filter}} = (4 \text{ psi } * 1.1) = 4.4 \text{ psi}$$


OR

 $\Delta P_{\text{filter}} = (.27 \text{ bar * 1.1}) = .30 \text{ bar}$

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder LTK:

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Length of Element (in)	Element Size and Media	Seal Material
		L3 = L size 3 μ E media (cellulose)	Omit = Buna N
LTK	18	L10 = L size 10 μ E media (cellulose)	H = EPR
		L25 = L size 25 μ E media (cellulose)	W = Buna N
		LZ1 = L size 1 μ Excellement® Z-Media® (synthetic)	H.5 = Skydrol® Compatibility
		LZ3 = L size 3 μ Excellement® Z-Media® (synthetic)	
		LZ5 = L size 5 μ Excellement® Z-Media® (synthetic)	
		LZ10 = L size 10 μ Excellement® Z-Media® (synthetic)	
		LZ25 = L size 25 μ Excellement® Z-Media® (synthetic)	

BOX 5

Dirt Alarm [©]		Dirt Alarm® Options
		Omit = None
	Visual	Y2C = Bottom-mounted gauge in cap

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Example: 18LZ3H
- Box 4. For options H and W, cap is anodized.
 H.5 seal designation includes the following:
 EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior.
 Skydrol® is a registered trademark of Solutia Inc.

Features and Benefits

- Medium pressure tank mounted filter ideal for applications with high pressure surge in the return line
- Two possible inlet porting locations
- Various Dirt Alarm® options available
- Also available with DirtCatcher® element
- Optional sampling fitting available upon request

150 *gpm*<u>570 L/min</u>
900 psi
62 bar

KF3 KL3

KLJ

MLF1

KLD

GRTB

MTA

NATO

KFT

__

IRT

.

BRT

TRI

0.

KTK

TK

MRT

Flow Rating:	Up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	900 psi (62 bar)
Min. Yield Pressure:	2700 psi (186 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	750 psi (52 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar)
Porting Head & Cap: Element Case:	Cast Aluminum (Anodized) Steel
Weight of MRT:	36.0 lbs. (16.4 kg)
Element Change Clearance:	17.0" (432 mm)

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E media (cellulose) and Z-Media® (synthetic)

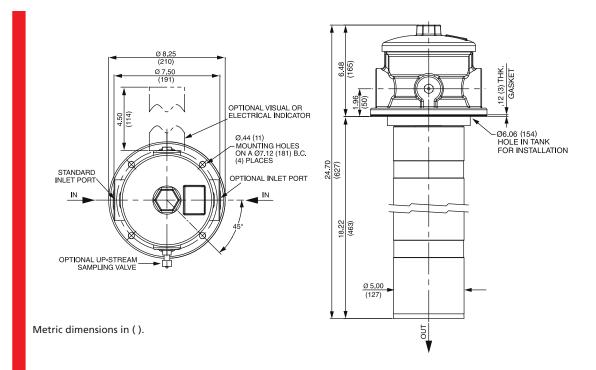
High Water Content All Z-Media® (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic)

Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic)

Fluid Compatibility

Filter Housing Specifications


> ccessories For Tank-Mounted

> > PAF

MAF

SCHROEDER INDUSTRIES 305

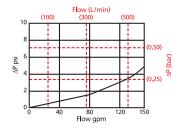
ME

Element Performance Information & Dirt Holding Capacity

		tio Per ISO 4572/N	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	$\beta_x \ge 75$	$\beta_{x} \ge 100$	$\beta_{x}(c) \geq 200$	$\beta_{x}(c) \ge 1000$	
18LZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LZ3	<1.0	<1.0	<2.0	<4.7	5.8
18LZ5	2.5	3.0	4.0	6.5	7.5
18LZ10	7.4	8.2	10.0	10.0	12.7
18LZ25	18.0	20.0	22.5	19.0	24.0
18LDZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LDZ3	<1.0	<1.0	<2.0	<4.7	5.8
18LDZ5	2.5	3.0	4.0	6.5	7.5
18LDZ10	7.4	8.2	10.0	10.0	12.7
18LDZ25	18.0	20.0	22.5	19.0	24.0

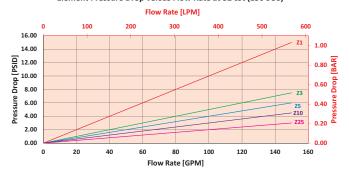
Element	DHC (gm)	Element	DHC (gm)	
18LZ1	224	18LDZ1	194	
18LZ3	230	18LDZ3	199	
18LZ5	238	18LDZ5	149	
18LZ10	216	18LDZ10	186	
18LZ25	186	18LDZ25	169	

Element Collapse Rating: 150 psid (10 bar)

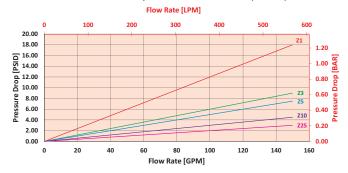

Flow Direction: Outside In

Element Nominal Dimensions: 4.0" (100 mm) O.D. x 18.5" (470 mm) long

MRT


 $\triangle \textbf{P}_{\text{housing}}$

MRT $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle \textbf{P}_{\text{element}}$

18LZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

18LDZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$$

Exercise:

Determine ΔP_{filter} at 80 gpm (303.2 L/min) for MRT18LZ10S24S24 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.5 psi (.10 bar) on the graph for the MRT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 80 gpm. In this case, $\Delta P_{\text{element}}$ is 2.5 psi (.17 bar) according to the graph for the 18LZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 1.5 \text{ psi } [.10 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 6 \text{ psi } [.17 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta \mathbf{P}_{\text{filter}} = 1.5 \text{ psi} + (2.5 \text{ psi} * 1.1) = 4.3 \text{ psi}$$

<u>OR</u>

 $\Delta P_{\text{filter}} = .10 \text{ bar} + (.17 \text{ bar} * 1.1) = .29 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder MRT:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7
MRT		-				_
Example:	NOTE: One	option per	hox			

1	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	
	MRT -	- 18 -	LZ10 -		- S24 S24 -			= MRT18LZ10S24S24

LDZ5 = L size DirtCatcher® 5 μ Excellement® Z-Media® LDZ10 = L size DirtCatcher® 10 μ Excellement® Z-Media® LDZ25 = L size DirtCatcher® 25 µ Excellement® Z-Media®

Visual

Electrical

Thermal

BOX 1 BOX 2 BOX 3 BOX 4 **Filter** Element **Seal Material Element Size and Media Series** Length (in) L3 = L size 3 μ E media (cellulose) Omit = Buna N **MRT** 18 L10 = L size 10 μ E media (cellulose) LZ1 = L size 1 μ Excellement® Z-Media® (synthetic) LZ3 = L size 3 μ Excellement[®] Z-Media[®] (synthetic) LZ5 = L size 5 μ Excellement® Z-Media® (synthetic) LZ10 = L size 10 μ Excellement® Z-Media® (synthetic) LZ25 = L size 25 μ Excellement® Z-Media® (synthetic) LDZ1 = L size DirtCatcher® 1 μ Excellement® Z-Media® LDZ3 = L size DirtCatcher® 3 μ Excellement® Z-Media®

BOX 5

Specification of both ports is required

	Inlet Porting							
Port A	Port B							
S = S24	S = S24	Inlet Porting Location						
N = None	N = None							
		A Top View B C Sampling Valve (Optional)						

BOX 6

	Dirt Alarm [®] Options						
	Omit =	None					
Visual	D5 =	Visual pop-up					
Visual with Thermal Lockout	D8 =	Visual w/ thermal lockout					
	MS5 =	Electrical w/ 12 in. 18 gauge 4-conductor cable					
	MS5LC =	Low current MS5					
		Electrical w/ DIN connector (male end only) Low current MS10					
		Flectrical w/ 12 ft 4-conductor wire					
Electrical	MS12 =	Electrical w/ 5 pin Brad Harrison connector (male end only)					
	MS12LC =	Low current MS12					
	MS16 =	Electrical w/ weather-packed sealed connector					
	MS16LC =	Low current MS16					
	MS17LC =	Electrical w/ 4 pin Brad Harrison male connector					
	MS5T =	MS5 (see above) w/ thermal lockout					
	MS5LCT =	Low current MS5T					
	MS10T =	MS10 (see above) w/ thermal lockout					
Electrical	MS10LCT =	Low current MS10T					
with Thermal	MS12T =	MS12 (see above) w/ thermal lockout					
Lockout	MS12LCT =	Low current MS12T					
Lockout	MS16T =	MS16 (see above) w/ thermal lockout					
	MS16LCT =	Low current MS16T					
	MS17LCT =	Low current MS17T					
Electrical	MS13 =	Supplied w/ threaded connector & light					
Electrical	MS14 -	Supplied w/ 5 pin Brad Harrison connector					

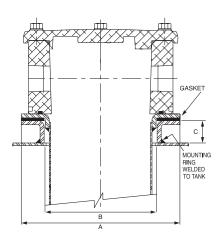
MS14 = Supplied w/ 5 pin Brad Harrison connector

MS13DCT = MS13 (see above), direct current, w/ thermal lockout

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

& light (male end)

Visual with MS13DCLCT = Low current MS13DCT

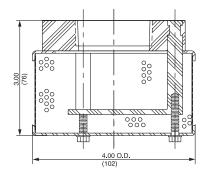

Lockout MS14DCLCT = Low current MS14DC

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Example: 18L3

BOX 7 **Options** Omit = No sampling valve SV = Up stream sampling valve

Accessories for Tank-Mounted Filters


The mounting ring is welded directly to the hydraulic reservoir. The filter is then mounted to the mounting ring with bolts converting the filter to a "weld in" design. The mounting ring eliminates the need to drill and tap the hydraulic reservoir.

Model Number	Part Number	А	В	С
ST, RT, RTI, LRT	A-LFT-813	7.00 (178)	5.00 (127)	1.00 (25)
ST, RT, RTI, LRT High Version	A-LFT-1448	7.00 (178)	5.00 (127)	1.50 (38)
ZT	A-LFT-1295	6.25 (159)	3.62 (92)	.88 (22)

Mounting Ring for ST, ZT, RT, RTI and **LRT Models**

KF3

KL3

The diffuser option (designated as D for outlet porting option in model number) is threaded to the bushing on the filter bowl below the outlet opening to help decrease turbulent flow in the hydraulic reservoir.

No other outlet port options are available if the diffuser is used.

	Model Number	Part Number	NPTF	
Ī	RT, KFT	A-LFT-1506	1½"	
	LRT	A-LFT-1507	2"	

Diffuser for KFT, RT and **LRT Models**

Check Valve

for ST, KFT,

RT. LRT and

BFT Models

Check

Valve

Diffuser

Combination

for KFT and

RT Models

MRT

Accessories For Tank-Mounted Filters

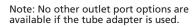
The check valve option (designated as C for outlet porting option in model number) makes it possible to service the filter without draining the oil from the reservoir when the filter is mounted below the oil level. It also prevents reservoir siphoning when system components are serviced.

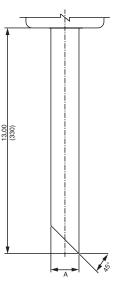
The check valve can also be used on other reservoir return flow lines, where components upstream of the check valve can be serviced without the loss of reservoir oil. The spring setting is .75-1.00 psi cracking. Order by part number shown in chart.

No other outlet port options are available if the check valve is used.

Model Number	Part Number	NPTF	А
ST, KFT, RT	A-LFT-158Q-1	1½"	2.34 (59)
LRT	A-LFT-880	2"	2.34 (59)
BFT	A-BFT-103	3"	4.50 (114)

3.50 (75) The diffuser/check valve option (designated as CD for outlet porting option in model number) is threaded on to the outlet port and combines the advantages of both separate options in one assembly.


Available as a separate item with 1½" NPT female threads, order part number A-LFT-1208.


No other outlet port options are available if the check valve/ diffuser is used.

Accessories for Tank-Mounted Filters

Tube Adapter Outlet Port for KFT, RT, LRT and BFT Models The tube adapter outlet port option (designated as T for outlet porting option in model number) provides the means to direct flow to the bottom of the hydraulic reservoir. Other tube lengths are available for quantity purchases. Contact your Schroeder distributor for details.

Model Number	Dimension A (O.D.) in. (mm)
RT	1.62 (41)
LRT	2.25 (57)
BFT	3.50 (89)

Threaded Outlet Port for ZT, KFT, RT, LRT and BFT Models The threaded male outlet port is standard on the KFT, RT, LRT and BFT models, and is available as an option on the ZT filter by designating OP for the outlet porting options in the model number.

- RT is furnished with 1½" NPT Male (standard) BFT is furnished with 3" NPT Male (standard)
- LRT is furnished with 2" NPT Male (standard) ZT is furnished with 1½" NPT Male (optional)
- KFT is furnished with 1 1/2" NPT Male (standard)

Spin-On Filter PAF1

Features and Benefits

- Spin-On with full ported die cast aluminum head for minimal pressure drop
- Offered in pipe and SAE straight thread porting
- Spin-On thread = 1.00-12UNF-2B
- Visual gauge or electrical switch dirt alarms
- Small profile for use in limited space
- Same day shipment model available

20 gpm 75 L/min 100 psi *7 bar*

Filter Housing **Specifications**

Fluid

Compatibility

TF1 KF3

KL3

MLF1

MTA

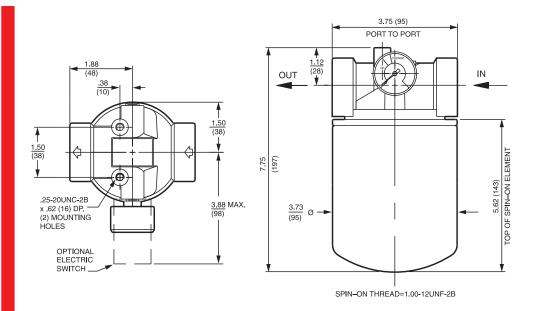
KFT

KTK

LTK

MRT

Mounted


Model No. of filter in photograph is PAF16PZ10P.

Flow Rating:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	100 psi (7 bar)
Min. Yield Pressure:	150 psi (10 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	Contact factory
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 36 psi (2 bar)
Porting Head & Cap: Element Case:	Die Cast Aluminum Steel
Weight of PAF1-6P:	1.8 lbs. (0.8 kg)
Element Change Clearance:	2.50" (65 mm)

Appropriate Schroeder Media Type Fluid **Petroleum Based Fluids** All E media (cellulose) and Z-Media® (synthetic) **High Water Content** 3 and 10 µ Z-Media® (synthetic)

Invert Emulsions 10 μ Z-Media® (synthetic) Water Glycols 3 and 10 µ Z-Media® (synthetic)

Installation instructions included on element.

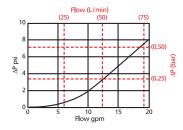
Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		atio Per ISO 4572/ particle counter (APC) c	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
P10	15.5	16.2	18.0	N/A	N/A
PZ10	7.4	8.2	10.0	8.0	10.0
PZ25	18.0	20.0	22.5	19.0	24.0

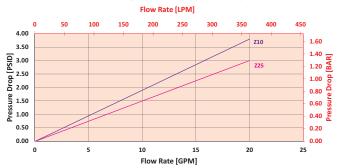
Element	DHC (gm)	Element	DHC (gm)
P10	37		
PZ10	16.8	PZ25	23.0

Element Collapse Rating: 100 psid (7 bar)


Flow Direction: Outside In

Element Nominal Dimensions: 3.75" (95 mm) O.D. x 5.5" (140 mm) long

PAF1


 $\triangle P_{\text{housing}}$

PAF1 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \boldsymbol{P}_{\text{element}}$

PZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 10 gpm (37.9 L/min) for PAF16PZ25PY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 10 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the PAF1 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 10 gpm. In this case, $\Delta P_{\text{element}}$ is 1.5 psi (.10 bar) according to the graph for the PZ25 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * V_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 1.5 \text{ psi } [.10 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta P_{\text{filter}} = 2 \text{ psi} + (1.5 \text{ psi} * 1.1) = 3.7 \text{ psi}$

<u>OR</u>

 $\Delta \mathbf{P}_{\text{filter}} = 14 \text{ bar} + (.10 \text{ bar} * 1.1) = .25 \text{ bar}$

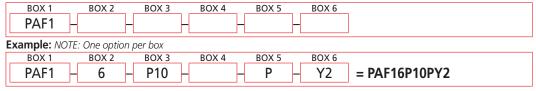
Information Based on Flow Rate and Viscosity

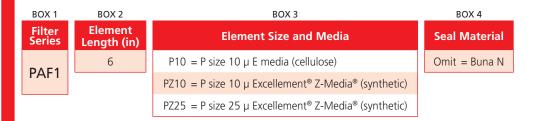
Pressure

Drop

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate } x \Delta P_f$. Plug this variable into the overall pressure drop equation.


Ele.	∆P	
P10	0.17	



Filter Model Number Selection

Highlighted product eligible for QuickDelivery

How to Build a Valid Model Number for a Schroeder PAF1:

BOX 5		BOX 6	
Inlet Porting	Dirt Alarm [®] Options		
P = 3/4" NPTF	Omit = None		
S = SAE-12	Visual Y2 = Back-mounted tri-color gauge		
	Electrical	ES = Electric switch	

NOTE:

Box 2. Replacement element part numbers are a combination of Boxes 3 and 4. Example: P10

Spin-On Filter MAF1

Features and Benefits

- Spin-On with full ported die cast aluminum head for minimal pressure drop
- Offered in pipe, SAE straight thread and ISO 228 porting
- Spin-On thread = 1.50-16UN-2B
- Visual gauge or electrical switch dirt alarms
- Small profile for use in limited space
- Available in 7" and 10" element lengths
- Available with NPTF inlet and outlet female test ports

50 gpm 190 L/min 100 psi 7 *bar*

KF3

TF1

KL3

MLF1

MTA

KFT

KTK

LTK

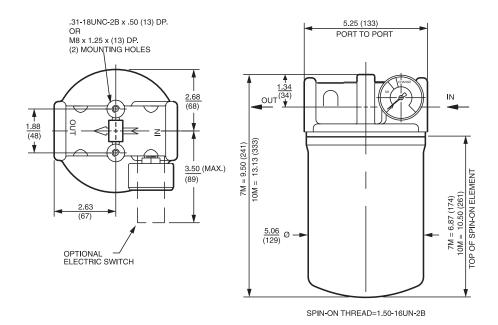
MRT

Fluid	
Compatibility	

Filter Housing **Specifications**

> Accessories **Mounted**

MAF1


Model No. of filter in photograph is MAF17M10S.

Flow Rating:	Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	100 psi (7 bar)
Min. Yield Pressure:	200 psi (10 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	Contact factory
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 48 psi (3 bar)
Porting Head & Cap: Element Case:	Die Cast Aluminum Steel
Weight of MAF1-7M: Weight of MAF1-10M:	4.2 lbs. (1.9 kg) 5.0 lbs. (2.3 kg)
Element Change Clearance:	2.50" (65 mm)

Appropriate Schroeder Media Type Fluid **Petroleum Based Fluids** All E media (cellulose) and Z-Media® (synthetic) **High Water Content** 3 and 10 µ Z-Media® (synthetic) **Invert Emulsions** 10 μ Z-Media® (synthetic) Water Glycols 3 and 10 µ Z-Media® (synthetic)

MAF1 Spin-On Filter

Installation instructions included on element.

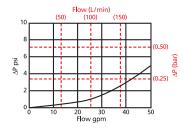
Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				o per ISO 16889 ated per ISO 11171
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
7MZ3/10MZ3	<1.0	<1.0	<2.0	<4.0	4.8
7MZ10/10MZ10	7.4	8.2	10.0	8.0	10.0
10MZW10	N/A	N/A	N/A	6.9	8.6

Element	DHC (gm)	Element	DHC (gm)
7MZ3	105		
7MZ10	104	10MZW10	53

Element Collapse Rating: 100 psid (7 bar)


Flow Direction: Outside In

Element Nominal Dimensions: 7M: 5.0" (125 mm) O.D. x 7.0" (180 mm) long

10M: 5.0" (125 mm) O.D. x 10.5" (261 mm) long

 $\triangle \textbf{P}_{\text{housing}}$

MAF1 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle P_{element}$

7MZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

10MZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 40 gpm (151.6 L/min) for MAF17MZ10PY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 40 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the MAF1 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 40 gpm. In this case, $\Delta P_{\text{element}}$ is 7 psi (.48 bar) according to the graph for the 7MZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{\text{element}}^* \vee_f)$. The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta P_{\text{filter}} = 3 \text{ psi} + (7 \text{ psi} * 1.1) = 10.7 \text{ psi}$

 $\Delta P_{\text{filter}} = .21 \text{ bar} + (.48 \text{ bar} * 1.1) = .74 \text{ bar}$

Pressure Drop **Information** Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = Flow Rate \times \Delta \mathbf{P}_f Plug$ this variable into the overall pressure drop equation.

Ele.	∆P	
7M3	0.23	
7M10	0.14	

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder MAF1:

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7	
Example: NOTE: One option per box	
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7	
MAF1 - 7 - M3 - P - Y2 - = MAF17	7M3PY2

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Element Length (in)	Element Size and Media	Seal Material
MAF1	7	M3 = M size 3 μ E media (cellulose)	Omit = Buna N
IVIALI	10	M10 = M size 10 μ E media (cellulose)	V = Viton®
		MZ3 = M size 3 μ Excellement® Z-Media® (synthetic)	
		MZ10 = M size 10 μ Excellement® Z-Media® (synthetic)	
		MZW10 = M size 10 μ Aqua-Excellement™ ZW media	
		MW = M size W media (water removal)	

	BOX 5	BOX 6		BOX 7	
Porting Options		Dirt Alarm [®] Options		Additional Options	
	P = 11/4" NPTF	Omit = None		Omit = None	
	S = SAE-20	Visual	Y2 = Back-mounted tri-color gauge	L = Two 1/8" NPTF	
	B = ISO 228 G-11/4"	Electrical	ES = Electric switch	inlet and outlet female test ports	

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Replacement element part numbers for 7" length begin with M. Replacement element part numbers for 10" length begin with 10M. Examples: M3V; 10MZ3V 10" only available with MZ3 and MZ10.
- Box 3. ZW media only available for 10" element.
- Box 4. For option V, all aluminum parts are anodized. Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 5. B porting option supplied with metric mounting holes.

Features and Benefits

- Spin-On with full ported cast iron head for minimal pressure drop
- Offered in pipe, SAE straight thread and ISO 228 porting
- Spin-On thread = 1.50-16UN-2B
- Various Dirt Alarm® options
- Available in 7" and 10" element lengths

60 gpm 230 L/min 150 psi 10 bar

Filter Housing **Specifications** KF3 KL3

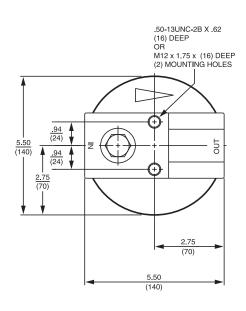
TF1

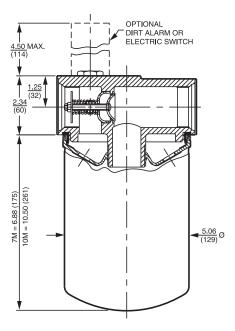
MLF1

MTA

KFT

KTK


LTK


Fluid **MRT** Compatibility

Model No. of filter in photograph is MF27M10SD5.

Flow Rating:	Up to 60 gpm (230 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	150 psi (10 bar)
Min. Yield Pressure:	250 psi (17 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	Contact factory
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 48 psi (3 bar)
Porting Head: Element Case:	Cast Iron Steel
Weight of MF2-7M:	8.6 lbs. (3.9 kg)
Element Change Clearance:	1.50" (40 mm)

Appropriate Schroeder Media Type Fluid Petroleum Based Fluids All E media (cellulose) and Z-Media® (synthetic) **High Water Content** 3 and 10 µ Z-Media® (synthetic) **Invert Emulsions** 10 μ Z-Media® (synthetic) Water Glycols 3 and 10 µ Z-Media® (synthetic)

SPIN-ON THREAD=1.50-16UN-2B

Installation instructions included on element.

Metric dimensions in ().

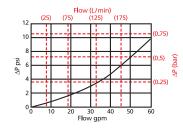
Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	β _x ≥ 75	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$	
7MZ3/10MZ3	<1.0	<1.0	<2.0	<4.0	4.8	
7MZ10/10MZ10	7.4	8.2	10.0	8.0	10.0	
10MZW10	N/A	N/A	N/A	6.9	8.6	

Element	DHC (gm)	Element	DHC (gm)
7MZ3	105		
7MZ10	104	10MZW10	53

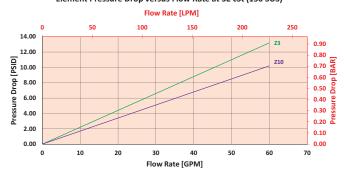
Element Collapse Rating: 100 psid (7 bar)

Flow Direction: Outside In


Element Nominal Dimensions: 7M: 5.0" (125 mm) O.D. x 7.0" (180 mm) long

10M: 5.0" (125 mm) O.D. x 10.5" (261 mm) long

MF2


 $\triangle P_{\text{housing}}$

MF2 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \boldsymbol{P}_{element}$

7MZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 40 gpm (151.6 L/min) for MF27MZ10PD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 40 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the MF2 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 40 gpm. In this case, $\Delta P_{\text{element}}$ is 7 psi (.48 bar) according to the graph for the 7MZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{\text{element}} * v_f$). The $\Delta P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta \mathbf{P}_{\text{filter}} = 5 \text{ psi} + (7 \text{ psi} * 1.1) = 12.7 \text{ psi}$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .34 \text{ bar} + (.48 \text{ bar} * 1.1) = .87 \text{ bar}$

Information Based on Flow Rate and Viscosity

Pressure

Drop

Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f. \text{ Plug this variable into the overall pressure drop equation.}$

Ele.	∆P
7M3	0.23
7M10	0.14

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder MF2:

BOX MF		BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	
Example	: Optio	n 1 NOTE:	One option pe	er box			
ВОХ	1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	
MF	2 –	7	– M3 -		– P	– D5	= MF27M3PD5

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	Element Length (in)	Element Size and Media	Seal Material	Porting Options
MF2	7	M3 = M size 3 μ E media (cellulose)	Omit = Buna N	P = 11/4" NPTF
IVIFZ	10	M10 = M size 10 μ E media (cellulose)	V = Viton®	S = SAE-20
		MZ3 = M size 3 μ Excellement® Z-Media® (synthetic)		B = ISO 228 G-11/4"
		MZ10 = M size 10 μ Excellement® Z-Media® (synthetic)		
		MZW10 = M size 10 μ Aqua-Excellement™ ZW media		
		MW = M size W media (water removal)		

BOX 6

	Dirt Alarm [®] Options
	Omit = None
Visual	D5 = Visual pop-up
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout
	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable
	MS5LC = Low current MS5
	MS10 = Electrical w/ DIN connector (male end only)
	MS10LC = Low current MS10
Electrical	MS11 = Electrical w/ 12 ft. 4-conductor wire
Electrical	MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)
	MS12LC = Low current MS12
	MS16 = Electrical w/ weather-packed sealed connector
	MS16LC = Low current MS16
	MS17LC = Electrical w/ 4 pin Brad Harrison male connector
	MS5T = MS5 (see above) w/ thermal lockout
	MS5LCT = Low current MS5T
	MS10T = MS10 (see above) w/ thermal lockout
Electrical with	MS10LCT = Low current MS10T
Thermal	MS12T = MS12 (see above) w/ thermal lockout
Lockout	MS12LCT = Low current MS12T
	MS16T = MS16 (see above) w/ thermal lockout
	MS16LCT = Low current MS16T
	MS17LCT = Low current MS17T
Electrical Visual	MS13 = Supplied w/ threaded connector & light
	MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)
Electrical	MS13DCT = MS13 (see above), direct current, w/ thermal lockout
Visual	MS13DCLCT = Low current MS13DCT
with	MS14DCT = MS14 (see above), direct current, w/ thermal lockout

MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Replacement element part numbers for 7" length begin with M. Replacement element part numbers for 10" length begin with 10M. Example: M3; 10MZ3 10" only available with MZ3 and MZ10.
- Box 3. ZW media only available for 10" element.
- Box 4. Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 5. B porting option supplied with metric mounting holes.

Thermal Lockout

Section 6 Suction Filters Selection Guide

		Pressure psi (bar)	Flow gpm (L/min)	Element Length/Size	Page
	Tank-Mounted Suction Filter				
'n	ST	NA	20 (75)	K, KT	323
Filters	In-Line Magnetic Suction Separators				
	TF-SKB	NA	12.5 (47)	SKB	329
Suction	KF3-SKB	NA	35 (130)	SKB	330
S	Tank-Mounted Magnetic Suction Separator				
	BFT-SKB	NA	75 (285)	SKB	331

Features and Benefits

- Tank-mounted suction filter for hydrostatic suction service
- Optional check valve prevents reservoir siphoning
- Easy Element changeout
- Inlet filter protects pump, reduces start-up failures

20 gpm 75 L/min

TF-SKF

KF3-SKB

RFT-SKR

Model No. of filter in photograph is ST1K10SY.

Flow Rating:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	Suction Filter
Min. Yield Pressure:	Not Applicable
Rated Fatigue Pressure:	Not Applicable
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Non-bypassing
Porting Head:	Die Cast Aluminum
Cap:	Steel
Element Case:	Steel
Weight of ST-1K:	11.1 lbs. (5.0 kg)
Weight of ST-2K:	14.7 lbs. (6.7 kg)
Element Change Clearance:	7.25" (185 mm) for 1K; 17.50" (445 mm) for KK

Filter Housing Specifications

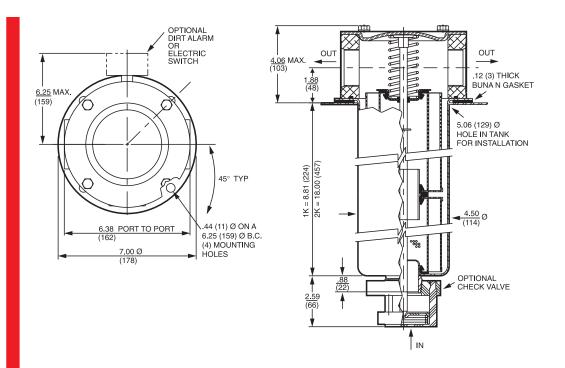
Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E media (cellulose) and Z-Media® (synthetic)

High Water Content 10 µ Z-Media® (synthetic)

Invert Emulsions 10 µ Z-Media® (synthetic)

Water Glycols 10 µ Z-Media® (synthetic)


Phosphate Esters $10~\mu$ Z-Media® (synthetic) with H (EPR) seal designation and $10~\mu$ E media

(cellulose) with H (EPR) seal designation

 $Skydrol^{\circledast}$ 10 μ Z-Media (synthetic) with H.5 seal designation (EPR seals and

stainless steel wire mesh in element, and light oil coating on housing exterior)

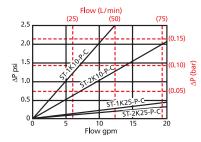
Fluid Compatibility

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

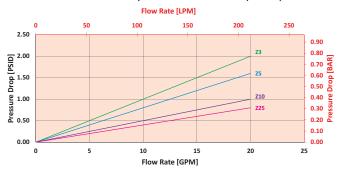
		o Per ISO 4572/NF article counter (APC) calibra		io per ISO 16889 trated per ISO 11171	
Element	B _X ≥ 75	$\beta_X \ge 100$	$\beta_X \ge 200$	β _X (c) ≥ 200	β _X (c) ≥ 1000
KTZ10	7.4	8.0	10.0	8.0	10.0

ement DHC (gm)
TZ10 56

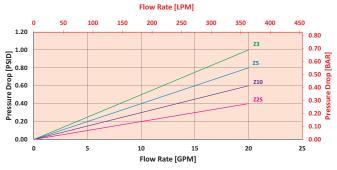

Element Collapse Rating: 150 psid (10 bar)

Flow Direction: Inside Out

Element Nominal Dimensions: 3.9" (99 mm) O.D. x 9.0" (230 mm) long


 $\triangle \mathbf{P}_{\text{housing}}$

ST $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle P_{element}$

KTZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2KTZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * v_f)$

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for ST1KTZ10PY using 160 SUS (34 cSt) fluid.

Use the element pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.5 psi (.10 bar) according to the graph for the ST element.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is .75 psi (.05 bar) according to the graph for the KZT10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (v_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * v_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 1.5 \text{ psi } [.75 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = .75 \text{ psi } [.05 \text{ bar}]$

 v_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.07

 $\Delta P_{\text{filter}} = 1.5 \text{ psi} + (.75 \text{ psi} * 1.07) = 2.3 \text{ psi}$

 $\Delta P_{\text{filter}} = .10 \text{ bar} + (0.05 \text{ bar} * 1.07) = 0.15 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

KF3-SKB

If your element is not graphed, use

the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_f \text{ Plug}$ this variable into the overall pressure drop equation.

•					
Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
К3	0.25	KZW25	0.14	2KZW10	0.12
K10	0.09	2K3	0.12	2KZW25	0.07
K25	0.02	2K10	0.05	3K3	0.08
KAS3	0.10	2K25	0.01	3K10	0.03
KAS5	0.08	2KAS3	0.05	3K25	0.01
KAS10	0.05	2KAS5	0.04	3KAS3	0.03
KZX10	0.22	2KAS10	0.03	3KAS5	0.02
KZW1	0.43	2KZX10	0.11	3KAS10	0.02
KZW3	0.32	2KZW1	-	3KZX10	0.07
KZW5	0.28	2KZW3	0.16		
KZW10	0.23	2KZW5	0.14		

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder ST:

BOX 1	BOX 2	BOX 3	BOX 4 BOX 5	BOX 6	BOX 7	BOX 8	
Example: NOTE: Only box 8 may contain more than one option							
BOX 1	BOX 2	BOX 3	BOX 4 BOX 5	BOX 6	BOX 7	BOX 8	
	1 4	I/OF			\ \/		= ST1K25PY

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Number of Elements	Element Part Number	Seal Material
ST	1	K10 = K size 10 μ E media (cellulose)	Omit = Buna N
31	2	K25 = K size 25 μ E media (cellulose)	H = EPR
		KTZ3 = K size 3 μ Excellement® Z-Media® (synthetic) inside-out flow	
		KTZ5 = K size 5 μ Excellement® Z-Media® (synthetic) inside-out flow	W = Buna N
		KTZ10 = K size 10 μ Excellement® Z-Media® (synthetic) inside-out flow	$H.5 = \frac{Skydrol^{\$}}{compatibility}$
		KTZ25 = K size 25 μ Excellement® Z-Media® (synthetic) inside-out flow	compatibility

BOX 5	BOX 6	BOX 7	BOX 8
Outlet Port	Optional Check Valve	Dirt Alarm [®] Options	Additional Options
P = 1½" NPTF	Omit = None	Omit = None	Omit = None
PP = Dual 1½" NPTF	C = Check Valve	Visual Y = Vacuum gauge	G2293 = Cork Gasket
S = SAE 24		YR = Vacuum gauge mounted on	G547 = Two 1/8"
SS = Dual SAE 24		opposite side of standard location	gauge ports
B = ISO 228 G-1½"		Electrical VS = Electrical Vacuum Switch	
BB = ISO 228 G-1½"		VSR = Electrical Vacuum Switch mounted on opposite side of standard location	
		on opposite side of standard location	

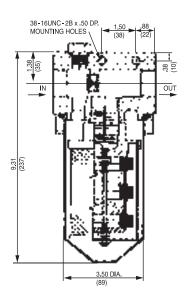
VSR1 = Heavy-Duty Vacuum Switch

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4.
- Box 4. For options H and W, all aluminum parts are anodized.
 H.5 seal designation includes the following:
 EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior.
 Skydrol[®] is a registered trademark of Solutia Inc.
- Box 6. See also "Accessories for Tank-Mounted Filters," page 299.

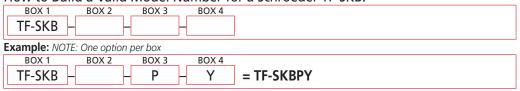
In-Line Magnetic Suction Separators TF-SKB

KF3-SKB


BFT-SKB

Features and Benefits

■ Protects components downstream by capturing potentially harmful ferrous particles


Specifications

Flow Rating: 12.5 gpm (47 L/min) Element Replacement Part Number: SKB-1 Element Change Clearance: 2.5" (65 mm) Weight of TF-SKB: 5.8 lbs (2.6 kg)

Metric dimensions in ().

Dirt Alarm® Options					
	Omit =	None			
Visual	Y =	Vacuum gauge			
Electrical	VS =	Electrical Vacuum Switch			
	VS1 =	Heavy-Duty Vacuum Switch			

BOX 4

Filter Model Number Selection

NOTE:

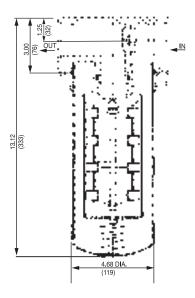
Box 1. Element replacement part number: SKB-1.

In-Line Magnetic Suction Separators

Features and Benefits

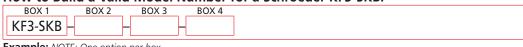
 Protects components downstream by capturing potentially harmful ferrous particles

Specifications

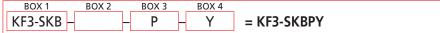

Flow Rating: 35 gpm (130 L/min)

Element Replacement Part Number: A-LF-1789

Element Change Clearance: 1.5" (40 mm)


Weight of KF3-SKB: 11.5 lbs (5.2 kg)

Metric dimensions in ().



Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder KF3-SKB:

Example: NOTE: One option per box

 BOX 1
 BOX 2
 BOX 3

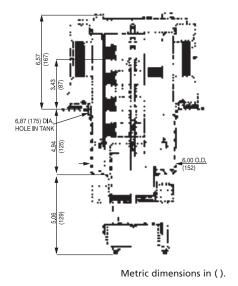
 Filter Series
 Seal Material
 Porting

 KF3-SKB
 Omit = Buna N
 P = 1½" NPTF

Omit = None

Visual Y = Vacuum gauge

Electrical VS = Electrical Vacuum Switch


VS1 = Heavy-Duty Vacuum Switch

BOX 4

Tank-Mounted Magnetic Suction Seperators BFT-SKB

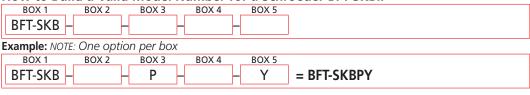
Features and Benefits

Protects components downstream by capturing potentially harmful ferrous particles

ST

KF3-SKB

BFT-SKB


Flow Rating: 75 gpm (285 L/min)

Element Replacement with check valve: A-SKB-3-76

Part Number: without check valve: SKB-3

Element Change Clearance: 13.5" (345 mm) Weight of BFT-SKB: 32.0 lbs (14.5 kg) **Specifications**

How to Build a Valid Model Number for a Schroeder BFT-SKB::

Filter Model Number Selection

BOX 5

	Dirt Alarm [®] Options
	Omit = None
Visual	Y = Vacuum gauge
	YR = Vacuum gauge mounted on opposite side of standard location
Electrical	VS = Electrical Vacuum Switch
	VSR = Electrical Vacuum Switch on opposite side of standard location
	VS1 = Heavy-Duty Vacuum Switch

NOTE:

Box 1. See specifications on previous page for element replacement part numbers.

Magnet Inserts for Filters

Magnet Inserts for Filters

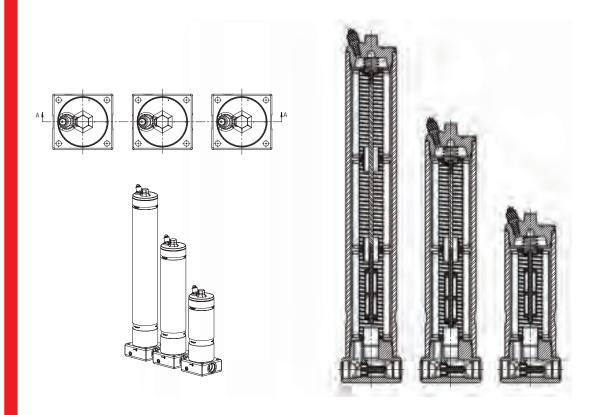
KF30, KC50, KC65 and TF50 are available with magnet inserts to trap ferrous material that passes through the filter element.

These inserts are removed with the element each time service is performed and cleaned before being reinserted with new elements.

Replacements are available by ordering parts:

Single Element

Double Element


Triple Element

KF30, KF50, KC50, KC65, KF3, LF1, MLF1

A-LF-1592

A-TF-301-1

A-TF-302-1

Filter Dirt Alarm[®] Selection Appendix A

Visual

Visual indicators provide an economical way to know at a glance when a filter element needs to be replaced. A variety of styles are available, ranging from gauges to mechanical pointers and pop-up cartridges.

Schroeder pointers use a tricolor disk to indicate the element condition. The pointer will reach the red section just before bypassing occurs.

In the case of a mechanical magnetic cartridge, a highly visible orange disk springs, or "pops up", at the pre-defined setting. Once activated, the orange signal continues to indicate a bypass or clogged condition, even following equipment shutdown, until it is manually reset. The pop-up indicator is interchangeable with other cartridge style indicators (electrical and electrical visual) available from Schroeder. A high pressure (>6000 psi working pressure) of the pop-up indicator is available and is noted below.

D—Tricolor Pointer Dirt Alarm® P/N 7619323 for plastic pointer only. For internal linkage and name plate, contact

D5—Red Pop Up Visual Indicator

D5S*—D5 with Protective Shroud *To order Protective Shroud only, use SAP #7642053

D5C—Same as D5 but mounted in cap

D5R—Same as D5 but mounted on opposite side of standard location

D9—Stainless Steel version of D5

D9C—Stainless Steel version of D5 mounted in cap

Y-Vacuum Gauge mounted in porting head P/N 7631068

YR—Same as Y but mounted on opposite side of standard location P/N 7631068

Y2—Back mounted 1/8" NPT Tricolor Glycerin-filled Gauge (0-60 psi) P/N 7627463 (0-100 psi) P/N 7631048

Y2R—Same as Y2 but mounted on opposite side of standard location P/N 7627463

Y2C—Bottom mounted 1/8" NPT Tricolor Gauge (0-60 psi) located in cap P/N 7626647

Y5—Same as Y2 but located in cap P/N 7627463

LF-4209 (G2213): 0 - 30 psid; P/N 7626589

DPG—Standard Differential Pressure Gauge P/N 7628635 or 7626554

The thermal lockout feature prevents activation of the indicator below temperatures of 90°F (32°C). This is a welcome feature in mobile applications where fluid temperatures may be well below 90°F at equipment start-up, and will prevent the indicator from showing a premature need to change the element.

D8—Orange Pop Up Visual Indicator with Thermal Lock-out

D8C—Same as D8 but mounted in cap

D8R—Same as D8 but mounted on opposite side of standard location

Visual with Thermal Lockout

Appendix A Filter Dirt Alarm[®] Selection

Electrical Visual

In addition to providing an electrical signal to provide a desired action, Schroeder electrical visual indicators also provide a visual indication of when an element needs to be changed. In the case of the MS and MS2 switches, the visual indicator is a color-coded disk, whereas the MS13 and MS14 dirt alarms provide a light.

MS—Cam operated electrical switch P/N 7627458 for switch For cam, color-coded disk, and mounting bracket,

order P/N 7604908. For internal linkage, contact factory.

Code	Type of Contact	Electrical Rating	Connection
MS	SPDT	15 Amps @ 125/250 vac, 0.5 Amp @ 125 VDC	½" conduit, female

Electrical |

The electrical indicators (MS Series) provide an electrical signal for activating various electric alarm systems or complete machine shutdown. These cartridge-style indicators are available on most Schroeder pressure, return line, and medium pressure filters and can be used for working pressures up to 6000 psi (415 bar) and cyclic conditions up to 4000 psi (276 bar).

- The design is modular; all electrical indicators consist of an MS10 indicator with the corresponding mating connector added to convert the MS10 to a MS5, MS11 etc.
- The standard micro switch for high current indicators is good for both AC and DC use. A separate micro switch with "gold" contacts is used for low current applications. This means that specification of AC or DC is no longer required (except for MS13 and MS14) in the indicator code or part number.
- Housings of all electrical indicators are made of aluminum.
- The indicator model tag includes the electrical wiring diagram.
- All of our indicators, with the exception of MS16, have a "ground" terminal.
- We are now able to offer the thermal lockout option to high current indicators.
- All indicators can be installed in a filter cap as the wiring harness can be disconnected at the "DIN" connector in order to remove the filter cap.
- All MS indicators have achieved the NEMA4X and IP65 ratings.

Information on these indicators, including drawing, circuit diagram, and photograph is provided on the following pages.

A different set of electrical pressure switches is available for Schroeder tank-mounted filters, along with heavy duty versions.

Schroeder suction filters (ST and models that house the SKB magnetic suction strainer) can be equipped with a vacuum switch.

VS—Vacuum Switch (1/8" NPT, normally open) P/N 7601947

VSR—Same as VS but mounted on opposite side of standard location P/N 7601947

ES—Standard electrical pressure switch (1/8" NPT, normally open) for tank-mounted filters P/N 7601943 (40 psi bypass)

ESC—Electrical pressure switch (MTA & MTB only) P/N 7601943

ESR—Same as ES but mounted on opposite side of standard location P/N 7601943

ES1—Heavy duty electrical pressure switch (1/8" NPT) with conduit connection (25psi bypass) P/N 7626636 (cracking over 25 psi) P/N 7626640 (43 psi bypass) P/N 7626640 (Black = common; Red = N.O.; Blue = N.C.)

ES1R—Same as ES1 but mounted on opposite side of standard location P/N 7626636

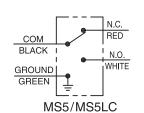
VS1—Heavy Duty Vacuum Switch (1/8" NPT) P/N 7623755, LF Pressure Switch

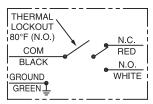
ES2— Super duty electric switch (1/8"NPT, normally closed) with thermal lockout P/N 7626564

ES3—Electric pressure switch (1/8"NPT) with DIN connector P/N 7626592 (Black = common; Red = N.O.; Blue = N.C.)

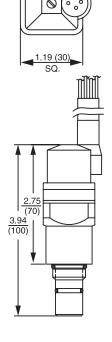
Code	Type of Contact	Electrical Rating	Connection
ES	SPST	8 Amps @ 12 VDC, 1 Amp @ 120 VAC 4 Amps @ 24 VDC, 0.5 Amp @ 240 VAC	Screw Terminal with Rubber Boot
ES1	SPDT	10 Amps @ 115 VAC 50mA-5A @ 24 VDC	½" Conduit, Male

Filter Dirt Alarm[®] Selection Appendix A



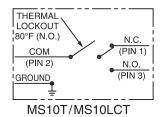


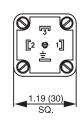
Electrical and Electrical with Thermal Lockout

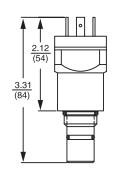

MS5 MS5LC MS5T MS5LCT

Supplied with 12 inch long 18 gauge 4-conductor cable

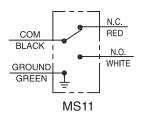


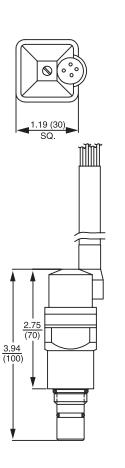

MS5T/MS5LCT




MS10 MS10LC MS10T MS10LCT

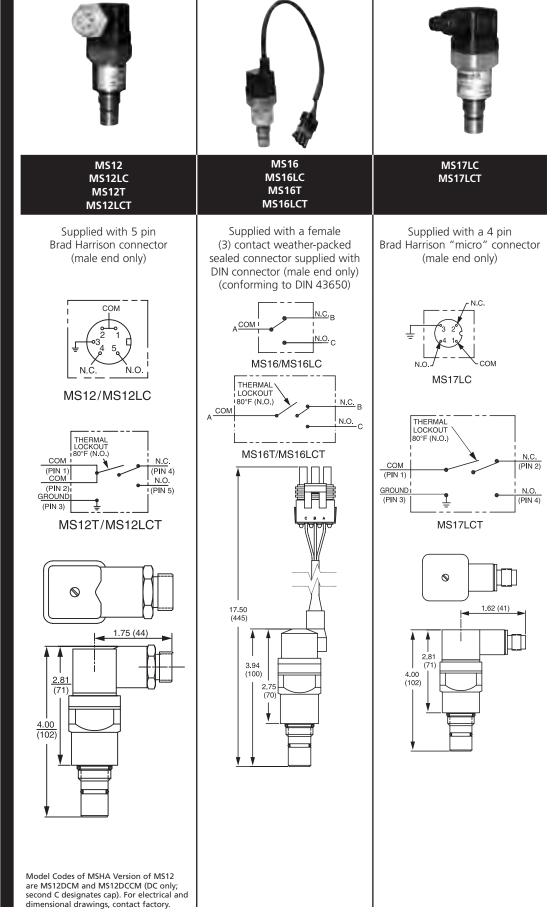
Supplied with DIN connector (male end only) (conforming to DIN 43650)





Model Codes of MSHA Version of MS10 are MS10DCM and MS10DCM (DC only; second C designates cap). For electrical and dimensional drawings, contact factory.

Supplied with 12 inch long 18 gauge 4-conductor cable


MS11

Appendix A Filter Dirt Alarm[®] Selection

Electrical and Electrical with Thermal Lockout (cont'd.)

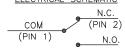
Filter Dirt Alarm[®] Selection Appendix A

Electrical and Electrical with Thermal Lockout (cont'd.)

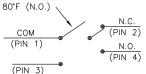
MS17T

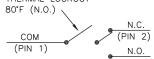
MS18LC MS18T MS18LCT

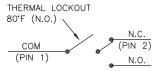
MS19LC MS19T MS19LCT


Supplied with a 4 pin M12 "micro" connector (male end only) (confirming to IEC 60947-5-2) Supplied with a 2 pin amp junior power timer connector (male end only) (must designate N.O. or N.C.)

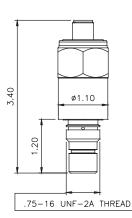
Supplied with a 2 pin deutsch connector (DTO4-2-P, male end only) (must designate N.O. or N.C.)

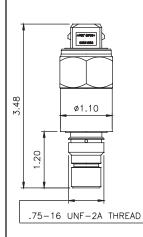

NORMAL OPERATING PRESSURE SCHEMATIC

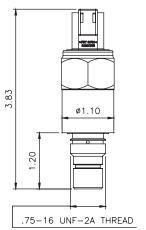

NORMAL OPERATING PRESSURE ELECTRICAL SCHEMATIC

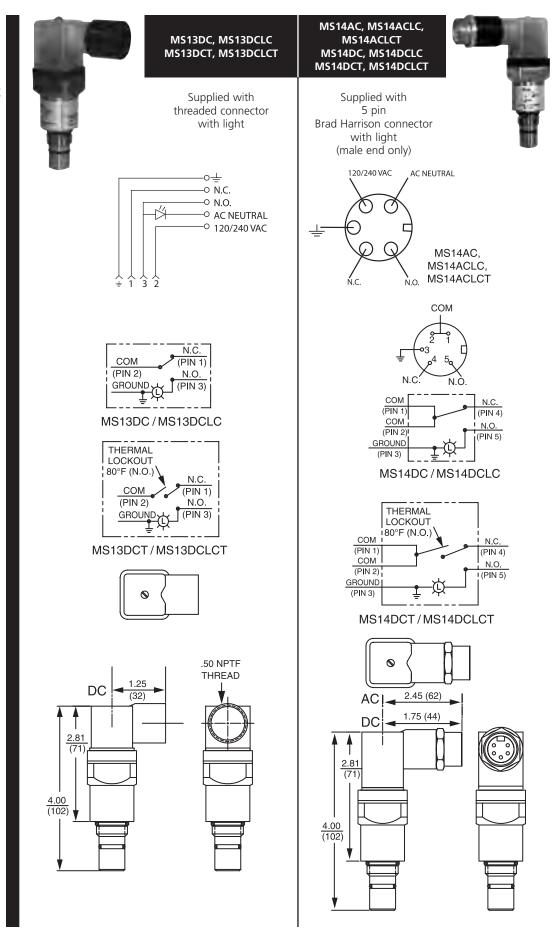

WITH THERMAL LOCKOUT THERMAL LOCKOUT

WITH THERMAL LOCKOUT THERMAL LOCKOUT


WITH THERMAL LOCKOUT







Appendix A Filter Dirt Alarm[®] Selection

Electrical Visual and Electrical Visual with Thermal Lockout

Filter Dirt Alarm[®] Selection Appendix A

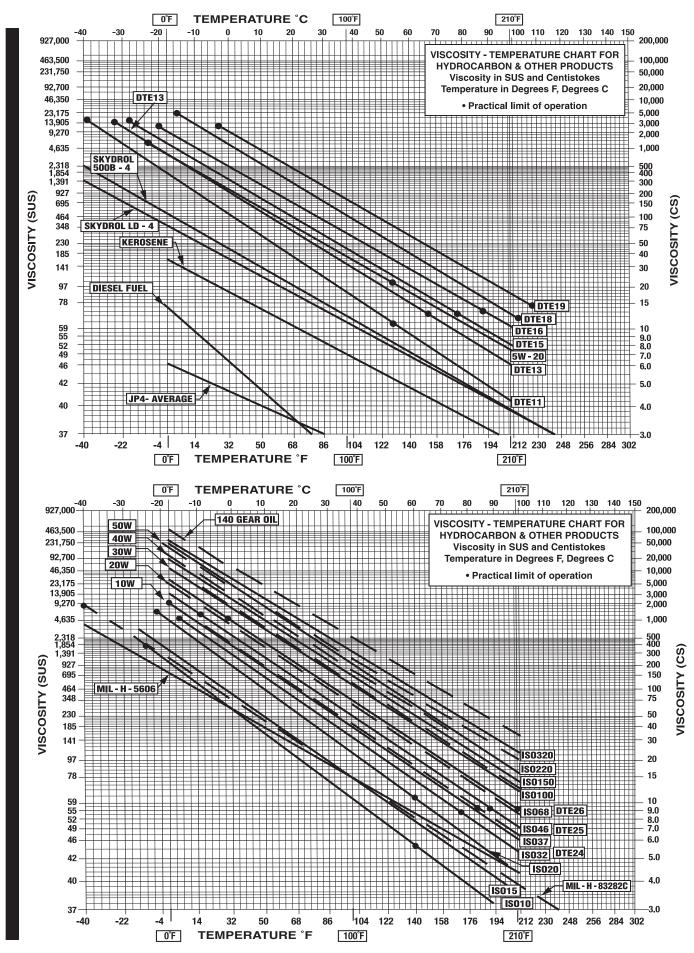

CHART 5	Electrical Rati	ngs: Electrical	Ca	rtri	dge	ln	dica	ato	rs V	Vith	nou	t T	her	ma	l Lo	cko	out							
Voltage	Voltage Volts@ Amps	Current Range (amps)	MS5	MS5LC	MS10	MS10LC	MS11	MS12	MS12LC	MS13DC	MS13DCLC	MS14DC	MS14DCLC	MS15DC	MS16	MS16LC	MS17	MS17LC	MS14AC	MS14ACLC	MS18	MS18LC	MS19	MS19LC
AC	240 @ 3	0.02 to 3	✓		✓		✓	\checkmark										✓						
AC	220 @ 0.05	0.005 to 0.05		✓		✓			✓													✓		\checkmark
AC	120 @ 5	0.02 to 5	✓		✓		✓	✓																
AC	120 @ 0.05	0.005 to 0.05		✓		✓			✓											✓		√		\checkmark
AC	24 @ 0.10	0.005 to 0.010		✓		✓			✓											\checkmark				
AC	12 @ 0.25	0.005 to 0.025		✓		✓			\checkmark											\checkmark				
AC	120 @ 4	0.05 to 4																	\checkmark					
AC	115 @ 0.05	0.01 to 0.05															\checkmark				\checkmark		\checkmark	
DC	110 @ 0.3	0.02 to 0.3	✓		\checkmark		✓	✓							\checkmark		\checkmark						\checkmark	
DC	110 @ 0.05	0.005 to 0.05		✓		✓			✓							✓		✓				$ \checkmark $		\checkmark
DC	24 @ 3	0.01 to 3																			$ \checkmark $		$ \checkmark $	
DC	24 @ 2	0.02 to 2	✓		\checkmark		\checkmark	$ \checkmark $		\checkmark		✓												
DC	24 @ 1	0.01 to 1																						
DC	24 @ 0.20	0.0 to 0.20												$ \checkmark $										
DC	24 @ 0.10	0.005 to 0.10		✓		\checkmark			\checkmark		✓		✓			$ \checkmark $						$ \checkmark $		\checkmark
DC	12 @ 5	0.01 to 5																			\checkmark			
DC	12 @ 2	0.02 to 2	✓		✓		✓			✓		✓			\checkmark									
DC	12 @ 1	0.01 to 1															\checkmark							
DC	12 @ 0.25	0.005 to 0.25		✓		✓			\checkmark		✓		✓					\checkmark				\checkmark		\checkmark

CHART 6 Electrical Ratings: Electrical Cartridge Indicators With Thermal Lockout*																									
Voltage	Voltage Volts @ Amps	Current Range (amps)	MS5T	MS5LCT	MS10T	MS10LCT	MS12T	MS12LCT	MS13DCT	MS13DCLCT	MS14DCT	MS14DCLCT	MS16T	MS16LCT	MS17	MS17T	MS17LCT	MS14ACT	MS14ACLCT	MS18	MS18T	MS18LCT	MS19	MS19T	MS19LCT
AC	120 @ 5	0.02 to 5	\checkmark		✓		✓																		
AC	220 @ 0.05	0.005 to 0.05		✓		✓		\checkmark											✓			✓			\checkmark
AC	120 @ 5	0.05 to 4																✓							
AC	115 @ 0.05	0.01 to 0.05													✓						✓			\checkmark	
DC	24@2	0.02 to 2	✓		✓		√		✓		✓		√			✓					✓			√	
DC	24 @ 0.10	0.005 to 0.10		✓		✓		✓		✓		✓		✓			✓					✓			✓
DC	12 @ 2	0.02 to 2	✓		✓		✓		✓		✓		✓			✓					✓			✓	
DC	12 @ 0.25	0.005 to 0.25		✓		✓		\checkmark		✓		✓		✓			✓					✓			✓

^{*}Thermal lockout prevents activation below 80°

Note: All indicators in Charts 4 and 5 above, meet NEMA4X and IP65 specifications.

Appendix B Viscosity Charts

Glossary of Standard Terms

actual process of filtration.

ABSOLUTE FILTRATION RATING: The diameter of the largest hard spherical particle that will pass through a filter under specified test condition. This is an indication of the largest opening in the filter element. It does not indicate the largest particle that will pass through the element, since particles of greater length than diameter may pass.

CAVITATION: A localized condition within a liquid stream causing the rapid implosion of a gaseous bubble.

CELSIUS: A temperature scale. 0 Celsius (or 0 Centigrade) is the freezing point of water (32° F).

CENTIPOISE: A unit of absolute (dynamic) viscosity.

CENTISTOKE: A unit of kinematic viscosity.

CLEANLINESS LEVEL: The analog of contamination level.

COLLAPSE PRESSURE: The outside-in differential pressure that causes structural failure.

 $\begin{tabular}{ll} \textbf{CONTAMINATION LEVEL:} A quantitative term specifying the degree of contamination. \end{tabular}$

CONTAMINANT: Any material or substance which is unwanted or adversely affects the fluid power system or components, or both.

CONTAMINANT, BUILT-IN: Initial residual contamination in a component, fluid, or system. Typical built-in contaminants are burrs, chips, flash, dirt, dust, fiber, sand, moisture, pipe dope, weld spatter, paints and solvents, flushing solutions, incompatible fluids, and operating fluid impurities.

DEPTH (FILTER): A filter medium which primarily retains contaminant within tortuous passages.

DIRT CAPACITY (DUST CAPACITY)

(CONTAMINANT CAPACITY): The weight of a specified artificial contaminant which must be added to the fluid to produce a given differential pressure across a filter at specified conditions. Used as an indication of relative service life.

EFFICIENCY (FILTER): The ability, expressed as a percent, of a filter to remove specified artificial contaminant at a given contaminant concentration under specified test conditions.

FLOW, LAMINAR (STREAMLINE): A flow situation in which fluid moves in parallel lamina or layers. (See Reynold's number.)

FLOW, TURBULENT: A flow situation in which the fluid particles move in a random manner. (See Reynold's number.)

ELEMENT (CARTRIDGE): The porous device which performs the

FLUID: A liquid, gas, or combination thereof.

FLUID POWER SYSTEM: A system that transmits and controls power through use of a pressurized fluid within an enclosed circuit.

INDICATOR: A device which provides external visual evidence of sensed phenomena.

INDICATOR, BY-PASS: An indicator which signals that an alternate flow path is being used.

INDICATOR, DIFFERENTIAL PRESSURE: An indicator which signals the difference in pressure between two points.

MICROMETER (MICRON)*: A unit of measurement one millionth of a meter long, or approximately 0.00003937 inch expressed in English Units. *Deprecated.

MIGRATION: Contaminant released downstream.

PRESSURE, CRACKING: The pressure at which a pressure-operated valve begins to pass fluid.

PRESSURE, DIFFERENTIAL (PRESSURE DROP): The difference in pressure between any two points of a system or a component.

PRESSURE, OPERATING: The pressure at which a system is operated.

PRESSURE, RATED FATIGUE: A pressure that a pressure-containing component is represented to sustain 10 million times without failure.

RATED FLOW: The maximum flow that the power supply system is capable of maintaining at a specific operating pressure.

REYNOLD'S NUMBER: A numerical ratio of the dynamic forces of mass flow to the shear stress due to viscosity. Flow usually changes from laminar to turbulent between Reynold's numbers 2,000 and 4,000.

Filter CONFIGURATIONS

Top-Ported Filter: Also known as a T-Ported or In-Line filter. All porting, the bypass valve, and indicators are located in the head. The head is permanently attached to the plumbing and the element is accessed by removing the bowl.

Base-Ported Filter: All porting, the bypass valve, and indicators are located in the base. The base is permanently attached to the plumbing and the element is removed through a cap, instead of removing the entire bowl.

Manifold Mounted Filter: Also known as a Sub-Plate filter. Most Base-Ported filters come with a manifold mount option. In some cases, a Top-Ported filter can also have a manifold mounting option. This allows the filter to be mounted directly onto a manifold, eliminating the need for hoses and fittings.

Cartridge Filter: Can be inserted directly into the manifold, eliminating the need for a separate housing or plumbing. Element is removed through a plug on the manifold.

Sandwich Filter: Is designed to be placed in between and directly interface with a manifold and stacked valves. Eliminates the need for hoses and fittings.

Duplex Filter: Made up of two or more filter assemblies. A valve allows the user to switch from one chamber to another. When one element is fully loaded, fluid is redirected though the second element. The loaded element can be changed without an interruption in flow. In the center position, the valve allows the oil to flow through both filters.

Filter CLASSIFICATIONS Types

Low Pressure Filter*: Filter pressure range from 0 to 500 psi. Mostly applied in return line filtration where system pressure is at a low point.

Medium Pressure Filter*: Filter pressure range from 500 to 1500 psi. Often used in hydrostatic charge pressure applications.

High Pressure Filter*: Filter pressure range is 1500 psi and above. Mostly applied on the pressure side of the system where pressure is highest.

High Pressure Hydrostatic Filter: Used in high pressure hydrostatic closed loop systems. Allows for reverse flow through the system.

Bypass vs. Non-Bypass: The pressure rises as an element becomes loaded with contaminants. Standard filters are equipped with a bypass valve that redirects hydraulic fluid when the pressure drop reaches a predetermined level, so the element does not lose its structural integrity. The filter element is bypassed and fluid continues on through the system.

In non-bypass filters bypass is not optional. They are used to protect expensive components that are more sensitive to contaminants, and cannot be exposed to unfiltered fluid. The element is exposed to higher pressures, as there is no bypass. For that reason this type of filter requires a high crush element to guarantee its structural integrity.

Air Breather: Filters air that is drawn into a reservoir when the fluid level changes.

Desiccant Air Breather: In addition to filtering out particle contaminants, this breather also removes water vapor.

Schroeder Industries LLC wishes to thank both the National Fluid Power Association and Penton Publishing for the use of certain generic terms shown in this glossary. Excerpts taken from ANSI B93.2-1986/NFPA T3.10.3. 1967(R1980) and Penton Publishing's Fluid Power Handbook & Directory (2006-2007).

^{*}These ranges have been determined to provide a quick reference for the purpose of creating our catalog. This is currently no industry standard terminology. These ranges are subject to change.

Other Product Line Catalogs

Filter Systems

The Filter Systems Catalog is designed to take the reader from the basic foundations of the principles of hydraulics found in the H&L catalog, to the tools required for troubleshooting and addressing the cleanliness or performance demands of any fluid system. We produce portable and permanent-mount pressure, flow and temperature evaluation instruments, oil cleanliness analysis devices, particle monitors and water-in-oil identification tools. We also produce a wide array of fluid conditioning tools — from standard in-line hydraulic filters, to sophisticated microprocessor-based instruments incorporating SMART® technology.

Fuel Filtration

The products contained in the Fuels Catalog, address issues relating to mobile and stationary equipment working in some of the toughest conditions all over the world. Schroeder's Fuel Filtration line ensures the smooth running of equipment and protects both the engine and the whole drive system from damage, which addresses both onboard and bulk tank requirements.

Process Filtration

The keystone product of Schroeder Process Filtration is the RF3 automatic self-cleaning backflush filter. This filter along with bag filters, cartridge filters and custom designed systems allows Schroeder to offer you complete solutions to your process filtration needs. Our process filters are used to remove solid contamination from fluids and protect the integrity of high grade components that depend on low viscosity water or water-based fluids and emulsions. Schroeder offers high performance filters for all industrial sectors. Improvements in operational efficiency, reduced downtime, lower maintenance costs and reduce environmental impact can all be expected.

To view the full version of our catalogs visit our website: www.schroederindustries.com

Notes Section:

Notes Section Continued:

Best Filter Delivery Program

Schroeder Industries is pleased to announce the establishment of the Best Filter Delivery Program. We recognize that emergencies arise despite the best planning and forecasting efforts. To be able to offer support and service in these situations, we performed an analysis to determine our top selling filter model numbers. The result is a list of thirteen specific filter assemblies, comprising high pressure, medium pressure, return line, tank-mounted and spin-on models.

For all the models listed, guaranteed shipment is same day, provided we receive the purchase order by 1:00 pm EST. An option to specify element media other than that called for on the web page is available with a 5-day guaranteed ship date after receipt of order. No other substitutions are permitted.

At the onset of this program, a distributor/customer may be limited to a maximum quantity. This may be necessary to enable Schroeder to fulfill its guarantee of adequate inventory to all distributors alike.

The intent of this program is to provide our customers with access to the products they use most often. Therefore, as we witness shifts in filter usage, we will make changes to this list and update the corresponding web page accordingly.

We hope you and your customers find this new program useful in working through unforeseen crisis situations.

Family	Product	Specifications	Standard Part Number	Alternate Elements
High Pressure, Top-Ported	NF30	20 gpm, 3000 psi, SAE 1-1/16"-12 straight porting, cartridge dirt alarm	NF301NZ10SD5	N/A
High Pressure, Top-Ported	DF40	30 gpm, 4000 psi, SAE 1-5/16"-12 straight porting, cartridge dirt alarm	DF401CCZ3SD5	CC10, CCZ5
High Pressure, Base-Ported	GKF30	100 gpm, 3000 psi, 1 element, SAE 1-7/8"- 12 straight porting, cartridge dirt alarm	GKF301KGZ10SD5	KG3, KG10, KG25, KGZ1, KGZ3, KGZ25
Low Pressure, Tank-Mounted	ZT	40 gpm, 100 psi, SAE 1-5/16"-12 straight inlet port, rear mounted tricolor visible dirt alarm	ZT8Z10SY2	N/A
Low Pressure, Tank-Mounted	GRT	100 gpm, 100 psi, 2 SAE 1.5" inlet ports, tricolor visible dirt alarm	GRT1KBGZ10S24S24NY2 (GRT-6915)	K3, K10, K25, KZ1, KZ3, KZ25
Low Pressure, Tank-Mounted	GRT	100 gpm, 100 psi, 1 SAE 1.25" straight inlet port, tricolor visible dirt alarm	GRT1KBGZ10S20NNY2 (GRT-6916)	KBG3, KBG10, BG25, KBGZ1, BGZ3,KBGZ25
Low Pressure, Tank-Mounted	LRT	150 gpm, 100 psi, 2 SAE 1.5" straight inlet ports, tricolor visible dirt alarm	LRT18LZ10S24S24NY2 (LRT-1820)	N/A
Low Pressure, Spin-On	PAF1	20 gpm, 100 psi, 3/4" NPTF porting, tricolor visible dirt alarm	PAF16PZ10PY2	N/A
Low Pressure, Top-Ported	GKF3	100 gpm, 300 psi, 1 element, SAE 1-7/8"- 12 straight porting, cartridge dirt alarm	GKF31KGZ25SD5	KG3, KG10, KG25, KGZ1, KGZ3, KGZ25
Medium Pressure, Top-Ported	SRLT	25 gpm, 1400 psi, SAE 1-1/16"-12 straight porting, cartridge dirt alarm	SRLT6RZ10S12D5	6RZ3, 6RZ25
Medium Pressure, Top-Ported	RLT	70 gpm, 1000 psi, 9" element, SAE 1-5/8"- 12 straight porting, cartridge dirt alarm	RLT9VZ10S20D5	9V25, 9VZ25

Hydraulic Lube Filtration

Accessories

Filter Systems

Fuel Filtration

Process Filtration

HYDRAULIC LUBE FILTRATION

L-2520 | 2019

*To access more information about Schroeder, scan the code with your app-enabled smartphone.

© Copyright 2019 Schroeder Industries. All rights reserved