MONITORED HYDRAULIC VALVE SYSTEMS

‘HBV’ Cetop 7&8 Series.

Patented Technology

SUITABLE FOR RISK CATEGORY 4 APPLICATIONS
As per AS4024.1 – Parts 1501 & 1502

Fluidsentry Pty Ltd
P.O.Box 8135
(1 / 32-34 Frankston Gardens Drive)
Carrum Downs Victoria 3201 Australia
Ph: +61 (3) 9776 4352 - Fax: +61 (3) 9776 4372
e-mail: sales@fluidsentry.com
www.fluidsentry.com

© Fluidsentry Pty Ltd ACN 109 094 975
SYSTEM OVERVIEW

PURPOSE
The valve monitoring system is primarily designed as an interface between the fluid power operation of a machine and the electrical safety circuits monitoring gates, guard and emergency stop circuits. The monitoring function can provide for detection of a single valve fault including change of switching times, sticking valve or spontaneous change of state as per the requirements of Australian Standard AS4024.1 Safety of Machinery, Part 1501 Design of safety related parts of control systems – General principles and European Standard EN954-1 Safety of Machinery – Safety related parts of control systems. The systems are additionally suited to the monitoring requirements of machine specific standards such as AS1219 Power Presses-Safety Requirements, EN693 Safety of Hydraulic Presses and EN692 Mechanical Presses, CSA C22.2 No.139-1982 & CSA Z142-02 Code for power press operation: Health, safety and guarding requirements.

HYDRAULIC SYSTEM
The hydraulic system comprises two Cetop 3 valves for pilot function and two series connected Cetop 8 Eaton valves with a block & bleed spool configuration selected as determined by a hazard identification / risk assessment for each and every application. The operation of the monitoring will now permit hydraulic power pack motors and pumps to remain online during operator access in to machinery areas which would have previously required full current isolation. The following installation guidelines would require the pump to be pressure compensated type or a relief / unloading valve fitted directly on pump outlet.

INSTALLATION
The dual valve system has been designed to interface with new or existing hydraulic applications and can be fully interlocked in to any existing safety systems to a category 4 level of integrity.

EXISTING HYDRAULIC CONTROL

INTERFACED MONITORED VALVES
HYDRAULIC PILOT VALVE SPECIFICATIONS

Description: Two directional control valves mounted on each of the Cetop 8 directional control valves for hydraulic safety applications in Cetop 3 sizes supplied in a four port two position single solenoid format. The valve incorporates a two pole precision positive driven plunger type limit switch pre approved to category 4 safety applications.

Materials:
- Main body, extension housing and end cap: Steel and Aluminium
- Spool: Induction Hardened Steel
- Spool Return Spring: Steel
- Pushrod Return spring: Cap Screws
- Screws: Cap Screws

Switch:
- Make: Bernstein
- Model: GC-U1Z iw
- Type: Precision Limit Plunger
- Approvals: EN 60947-5-1, EN 60947-1, 73/23/EEC
- Contacts: 1 x Normally closed 1 x Normally Open

Wiring:
- Switch Contacts NC: 11 – 12 White – Black
- Spare Contacts NO: 23 – 24 Brown – blue

Lead:
- Type: Polyurethane Oil Resistant

Coil:
- Voltages available: 24VDC
- Current/Watts: Cetop 3 1.25 Amp/30Watts

Performance:
- Valve working pressure range: 0 – 350 Bar – Cetop 3
- Solenoid: Direct Acting
- Port connection: P, T, T1, A, B
- Cetop 3 Mounting
- Medium: Hydraulic Oil ISO 32 to 68
- Operating temperature range: +20 C to +70 C
- Subject To Spool Selection
- Flow Rate
- Cetop 3 32 Milliseconds
- Activation time: Cetop 3 40 Milliseconds
- Deactivation time:

Rating:
- Protection: IP 65

Weight:
- Cetop 3 valve: 3Kg

Manual:
- Manual Override: Removed

Cleanliness:
- ISO 4406 Code: 19 / 16 / 13
EN ISO 13849 Data Sheet

| Valve Type | HBV-76, HBV-762MA, HBV-762MS
	HBV-86, HBV-862MA, HBV-862MS
Date	April 2011
Revision	A
MTTFd	150 years
Vibration	Vibration in line with spool axis < 5g
Silting	Silting occurs when hydraulic valves are left in the actuated position for long periods of time. It is recommended that the user considers periodically cycling the valve to limit these effects.

Note

The products must be used in accordance with the installation instructions and operating conditions in the relevant data sheet, which has been produced to support the requirements of the harmonized standard EN ISO 13849.

Additionally, for products intended to be sold in European Economic Area:

“Safety devices” or other safety functions mentioned in any product literature are not necessarily “safety components” as defined by the Machinery Directive 2006/42/EC, unless otherwise stated together with the CE Mark and specific reference to said directive.
HYDRAULIC CETOP 7 & 8 VALVE & MANIFOLD SPECIFICATIONS

Description: Dual directional control valves mounted on a specially manufactured series ported manifold for hydraulic safety applications in Cetop 7 & 8 sizes supplied in a four port two position hydraulic pilot format. Each valve incorporates 2 two pole precision positive driven plunger type limit switch pre approved to Category 4 safety applications for both actuated and unactuated states.

Models:
- Cetop 7 Single / Dual: HBV76 / HBV762M
- Cetop 8 Single / Dual: HBV86 / HBV862M

Materials:
- Main body, extension housing and end cap: Steel and Aluminium
- Spool: Induction Hardened Steel
- Pushrod Return spring: Steel
- Spool Return Spring: Steel
- Screws: Cap Screws

Switch:
- Make: Bernstein
- Model: C2-U1Z (600.8101.001)
- Type: Precision Limit Plunger
- Approvals: EN 60947-5-1, EN 60947-1, VDE 0660/100
- Contacts: 1 x Normally closed 1 x Normally Open

Wiring:
- Switch Contacts NC: 11 – 12 White – Black
- Spare Contacts NO: 23 – 24 Brown – blue
- Primary Valve Unactuated: Normally Open
- Primary Valve Actuated: Normally Closed
- Secondary Valve Unactuated: Normally Open
- Secondary Valve Actuated: Normally Closed

Lead:
- Type: Polyurethane Oil Resistant

Performance:
- Valve working pressure range: 0 – 350 Bar Steel Manifold
- Pilot Signal: 0 – 210 Bar Aluminium Manifold
- Medium: Hydraulic
- Operating temperature range: Hydraulic Oil ISO 32 to 68
- Flow Rate: +20 C to +70 C
- Activation time: 32 Milliseconds
- Deactivation time: 67 Milliseconds

Rating:
- Protection: IP 65

Weight:
- Cetop 7 Valve System: 75Kg
- Cetop 8 Valve System: 110Kg

Manual:
- Manual Override: Removed

Manifold:
- Material: Aluminium
 - Steel (Zinc Plated)

Connections:
- P & A Ports: C7 Code 62 1” / C8 Code 62 1 ¼”
- T Ports: C7 Code 61 1” / C8 Code 61 1¼”
Cetop 7 Single Valve HBV76

![Graph for Cetop 7 Single Valve HBV76](image)

Cetop 7 Dual Valve HBV762M

![Graph for Cetop 7 Dual Valve HBV762M](image)
Cetop 8 Single Valve HBV86

![Graph](image1)

Cetop 8 Dual Valve HBV862M

![Graph](image2)

© Fluidsentry Pty Ltd ACN 109 094 975
DECLARATION OF CONFORMITY

Valves manufactured by Fluidsentry Pty Ltd to the specifications to conform to the requirements of the following Directives and European Standards.

EMC Directive: 89/336/EEC – EN 55014, EN 50081-2, EN 50082-1, EN 50082-2

Fluidsentry Pty Ltd herewith declares that the supplied Fluidsentry™ models of:

VALVES: HBV 7 & 8 Series

TYPE: HYDRAULIC

Comply with all applicable Directives and Harmonized Standards for Hydraulic Fluid Power Systems and their components and are qualified to bear the CE mark. Melbourne Australia – 7th May 2009

Valve 1 Serial No: Valve 3 Serial No:

Valve 2 Serial No: Valve 4 Serial No:

Manifold Serial No:

Test Date:/.........../...........

FLUIDSENTRY™ Murray Andrew Hodges
ACN 109 094 975
P.O. Box 8135
Carrum Downs Vic 3201. AUSTRALIA.
Phone: +61 (0)3 9776 4352
Fax: +61 (0)3 9776 4372
Email: sales@fluidsentry.com

Name and signature of Authorized person.
ELECTRICAL INTERFACING/INTERLOCKING

Note: Inputs 3 & 4 are in actuated state when valve system deenergized.

MANIFOLD

CAUTION – IMPORTANT: The above drawings are a conceptual example and are intended for guidance purposes only. They have not been specifically drawn in relation to your plant. Failing to ensure professional installation of Fluidsentry equipment which has regard to the specific circuit design and operation of the plant on which it is being installed may create a safety hazard. Accordingly Fluidsentry is not liable for any loss or injury, whether direct or indirect, resulting from the incorrect installation of this product.

© Fluidsentry Pty Ltd ACN 109 094 975
CORRECT USAGE

Circuit Placement and Connection
Careful consideration must be given to suitable circuit placement and care must be taken not to pressurise the tank port of the monitored valve. Pressurisation of the tank ports can cause damage to the valve. Outlet ports of control valving must not be connected the ‘T’ port of the monitored valves. For example where a monitored block and bleed function is to be performed in conjunction with a directional control valve (DCV), the monitored valve would be typically placed in circuit prior to the DCV. The ‘T’ or tank ports must be plumbed directly to tank without any other interconnection or restriction.

Cleanliness
Fluidsentry recommends 10 micron absolute filtering for the hydraulic supply to monitored valving.

Connection of Tank Lines
Return line filtering must not be used on ‘T’ or ‘T1’ tank lines.

Silting
Silting occurs when hydraulic valves are left in the actuated position for long periods of time and in conjunction with dirty or contaminated oil this can cause valves to seize in a dangerous state. The only remedy for such a situation is maintained oil filtering systems and periodic operation of valves. Valves should be cycled a minimum once every 8 hours of continuous operation. Silting may also be overcome by cycling each valve at some idle time when there is no requirement for access by operators and there is no operation of the hydraulics.

Power Supply
A power supply providing the total current consumption of each coil energised at any one time is required. If an inadequate power supply exists, valves may fail to energise and solenoid coils could be subject to damage.

Cooling
The solenoid coils of the HBV series monitored valves are cooled via recirculation of the hydraulic oil. Solenoid coils should not be energised for an extended period without an active hydraulic oil supply.

Gravity Loads
Due to spool seepage and or drainage orifices where applied, monitored spool valves are not recommended for gravity loads.

Monitoring
Each Fluidsentry monitored valve provides a normally closed mechanically linked positive opening high precision switch for the safety function (de-energised state). To prevent undetected faults the monitoring contacts should not be series connected in a feedback circuit. For safety applications the normally closed contacts must be connected to individual electrical safety monitoring system inputs. Each valve has an additional normally open contact for process control signaling purposes.
Cetop 7 Dimensions
Cetop 8 Dimensions